Phần 2. Trắc nghiệm lựa chọn đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Cho hàm số \[f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{\sin \pi x}&{{\rm{khi}}\,\,\left| x \right| \le 1}\\{x + 1\;}&{{\rm{khi}}\,\;\left| x \right| > 1}\end{array}} \right.\]. Các mệnh đề sau đúng/sai?
a) Hàm số liên tục trên \(\mathbb{R}\).
b) Hàm số liên tục trên các khoảng \(\left( { - \infty ; - 1} \right)\) và \(\left( { - 1; + \infty } \right)\).
c) Hàm số liên tục trên các khoảng \(\left( { - \infty ;1} \right)\) và \(\left( {1; + \infty } \right)\).
d) Hàm số gián đoạn tại \(x = \pm 1\).
Phần 2. Trắc nghiệm lựa chọn đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Cho hàm số \[f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{\sin \pi x}&{{\rm{khi}}\,\,\left| x \right| \le 1}\\{x + 1\;}&{{\rm{khi}}\,\;\left| x \right| > 1}\end{array}} \right.\]. Các mệnh đề sau đúng/sai?
a) Hàm số liên tục trên \(\mathbb{R}\).
b) Hàm số liên tục trên các khoảng \(\left( { - \infty ; - 1} \right)\) và \(\left( { - 1; + \infty } \right)\).
c) Hàm số liên tục trên các khoảng \(\left( { - \infty ;1} \right)\) và \(\left( {1; + \infty } \right)\).
d) Hàm số gián đoạn tại \(x = \pm 1\).
Câu hỏi trong đề: Đề kiểm tra Hàm số liên tục (có lời giải) !!
Quảng cáo
Trả lời:

a) Sai |
b) Sai |
c) Đúng |
d) Sai |
Ta có: \(\mathop {\lim }\limits_{x \to {1^ + }} \left( {x + 1} \right) = 2\) và \(\mathop {\lim }\limits_{x \to {1^ - }} \sin \pi x = 0\)\( \Rightarrow \mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) \ne \mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right)\) do đó hàm số gián đoạn tại \(x = 1\).
Tương tự: \(\mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ - }} \left( {x + 1} \right) = 0\) và \(\mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ + }} \sin \pi x = 0\)
\( \Rightarrow \mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ - }} f\left( x \right)\)\( = \mathop {\lim }\limits_{x \to - 1} f\left( x \right)\)\( = f\left( { - 1} \right)\) do đó hàm số liên tục tại \(x = - 1\).
Với \(x \ne \pm 1\) thì hàm số liên tục trên tập xác định.
Vậy hàm số đã cho liên tục trên các khoảng \(\left( { - \infty ;1} \right)\) và \(\left( {1; + \infty } \right)\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn A
Tập xác định: \(D = \mathbb{R}\)
\(\mathop {\lim }\limits_{x \to 2} f\left( x \right)\)\( = \mathop {\lim }\limits_{x \to 2} \frac{{x - 2}}{{\sqrt {x + 2} - 2}}\)\( = \mathop {\lim }\limits_{x \to 2} \frac{{\left( {x - 2} \right)\left( {\sqrt {x + 2} + 2} \right)}}{{x - 2}}\)\( = \mathop {\lim }\limits_{x \to 2} \left( {\sqrt {x + 2} + 2} \right)\)\( = 4\)
\(f\left( 2 \right) = 4\)
\( \Rightarrow \mathop {\lim }\limits_{x \to 2} f\left( x \right) = f\left( 2 \right)\)
Vậy hàm số liên tục tại \(x = 2\).
Câu 2
Lời giải
Chọn A
Ta có: \(y = \frac{{3x - 4}}{{x - 2}}\) có tập xác định: \(D = \mathbb{R}\backslash \left\{ 2 \right\}\), do đó gián đoạn tại \(x = 2\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.