Câu hỏi:

07/10/2025 9 Lưu

Doanh thu bán hàng trong 20 ngày được lựa chọn ngẫu nhiên của một cửa hàng được ghi lại ở bảng sau (đơn vị: triệu đồng):Tứ phân vị thứ nhất của mẫu số liệu trên gần nhất với giá trị nào trong các giá trị sau? (ảnh 1)
Tứ phân vị thứ nhất của mẫu số liệu trên gần nhất với giá trị nào trong các giá trị sau?

A. 7.                           
B. 7,6.                      
C. 8.                               
D. 8,6.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn B

Tứ phân vị thứ nhất của dãy số liệu là \(\frac{1}{2}\left( {{x_4} + {x_5}} \right)\) thuộc nhóm \([7;9)\) nên tứ phân vị thứ nhất của mẫu số liệu là \({Q_1} = 7 + \frac{{\frac{{20}}{4} - 2}}{7}(9 - 7) = 7,86\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn B

Số trung bình cộng của mẫu số liệu ghép nhóm là:

\(\bar x = \frac{{4.42,5 + 14.47,5 + 8.52,5 + 10.57,5 + 6.62,5 + 2.67,5}}{{44}} = \frac{{585}}{{11}}\).

Phương sai của mẫu số liệu ghép nhóm là:

\[\begin{array}{l}{s^2} = \frac{1}{{44}}\left[ {4{{\left( {42,5 - \frac{{585}}{{11}}} \right)}^2} + 14{{\left( {47,5 - \frac{{585}}{{11}}} \right)}^2} + 8{{\left( {52,5 - \frac{{585}}{{11}}} \right)}^2} + 10{{\left( {57,5 - \frac{{585}}{{11}}} \right)}^2}} \right.\\\left. {\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + 6{{\left( {62,5 - \frac{{585}}{{11}}} \right)}^2} + 2.{{\left( {67,5 - \frac{{585}}{{11}}} \right)}^2}} \right] \approx 46,12.\end{array}\]

Độ lệch chuẩn của mẫu số liệu ghép nhóm là: \(s = \sqrt {{s^2}}  = \sqrt {46,12}  \approx 6,8\).

Lời giải

a) Cỡ mẫu là \(n = 3 + 12 + 15 + 8 = 38\). Gọi \({x_1}, \ldots ,{x_{38}}\) là thời gian chờ khám bệnh của 38 bệnh nhân này và giả sử rằng dãy số liệu gốc này đã được sắp xếp theo thứ tự tăng dần. Tứ phân vị thứ nhất của mẫu số liệu gốc là \({x_{10}}\) nên nhóm chứa tứ phân vị thứ nhất là nhóm \([5;10)\) và ta có:

\({Q_1} = 5 + \left[ {\frac{{\frac{{38}}{4} - 3}}{{12}}} \right].5 \approx 7,71.\)

Tứ phân vị thứ ba của mẫu số liệu gốc là \({x_{29}}\) nên nhóm chứa tứ phân vị thứ ba là nhóm \([10;15)\) và ta có: \({Q_3} = 10 + \left[ {\frac{{\frac{{3 \cdot 38}}{4} - 15}}{{15}}} \right].5 = 14,5.\)

Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \({\Delta _Q} = {Q_3} - {Q_1} \approx 14,5 - 7,71 = 6,79\).

b) Do \({\Delta _Q} = 6,79 < 9,23\) nên thời gian chờ của bệnh nhân tại phòng khám \(Y\) phân tán hơn thời gian chờ của bệnh nhân tại phòng khám \(X\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP