Câu hỏi:

07/10/2025 214 Lưu

Dũng là học sinh rất giỏi chơi rubik, bạn có thể giải nhiều loại khối rubik khác nhau. Trong một lần tập luyện giải khối rubik \(3 \times 3\), bạn Dũng đã tự thống kê lại thời gian giải rubik trong 25 lần giải liên tiếp ở bảng sau:
Khoảng tứ phân vị của mẫu số liệu ghép nhóm là (ảnh 1)
Khoảng tứ phân vị của mẫu số liệu ghép nhóm là

A. 10,75.                    
B. 1,75.                    
C. 3,63.                          
D. 14,38.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn C

Cỡ mẫu \(n = 25\).

Gọi \({x_1};{x_2}; \ldots ;{x_{25}}\) là mẫu số liệu gốc về thời gian giải rubik trong 25 lần của bạn Dũng được xếp theo thứ tự không giảm.

Ta có: \({x_1}; \ldots ;{x_4} \in [8;10);{x_5}; \ldots ;{x_{10}} \in [10;12);{x_{11}}; \ldots ;{x_{18}} \in [12;14);{x_{19}}; \ldots ;{x_{22}} \in [14;16)\);

\({x_{23}}; \ldots ;{x_{25}} \in [16;18)\).

Tứ phân vị thứ nhất của mẫu số liệu gốc là \(\frac{1}{2}\left( {{x_6} + {x_7}} \right) \in [10;12)\). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: \({Q_1} = 10 + \frac{{\frac{{25}}{4} - 4}}{6}(12 - 10) = 10,75\).

Tứ phân vị thứ ba của mẫu số liệu gốc là \({x_{19}} \in [14;16)\). Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: \({Q_3} = 14 + \frac{{\frac{{3.25}}{4} - (4 + 6 + 8)}}{4}(16 - 14) = 14,375\).

Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \({\Delta _Q} = {Q_3} - {Q_1} = 3,63\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng. Xét số liệu ở Hà Nội:

Khoảng biến thiên: \(R = 31,8 - 16,8 = 15\).

Số phần tử của mẫu là \(n = 12\).

Tần số tích lũy của các nhóm lần lượt là \(c{f_1} = 2,c{f_2} = 5,c{f_3} = 7,c{f_4} = 8,c{f_5} = 12\).

Ta có: \(\frac{n}{4} = \frac{{12}}{4} = 3\) mà \(2 < 3 < 5\) suy ra nhóm 2 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 3.

Xét nhóm 2 là nhóm \(\left[ {19,8;22,8} \right)\) có \(s = 19,8,h = 3,{n_2} = 3\) và nhóm 1 là nhóm \(\left[ {16,8;19,8} \right)\) có \(c{f_1} = 2\). Ta có tứ phân vị thứ nhất là: \({Q_1} = s + \left( {\frac{{3 - c{f_1}}}{{{n_2}}}} \right).h = 19,8 + \left( {\frac{{3 - 2}}{3}} \right).3 = 20,8\).

Ta có: \(\frac{{3n}}{4} = \frac{{3.12}}{4} = 9\) mà \(8 < 9 < 12\) suy ra nhóm 5 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 9.

Xét nhóm 5 là nhóm \(\left[ {28,8;31,8} \right)\) có \(t = 28,8,1 = 3,{n_5} = 4\) và nhóm 4 là nhóm \(\left[ {25,8;28,8} \right)\) có \(c{f_4} = 8\).

Ta có tứ phân vị thứ ba là: \({Q_3} = t + \left( {\frac{{9 - c{f_4}}}{{{n_5}}}} \right).l = 28,8 + \left( {\frac{{9 - 8}}{4}} \right).3 = 29,55\).

Khoảng tứ phân vị của mẫu số liệu ghép nhóm trên là: \({Q_3} - {Q_1} = 29,55 - 20,8 = 8,75\) .

b) Sai. Số trung bình cộng của mẫu số liệu ghép nhóm là:

\(\overline {{x_1}}  = \frac{{2.18,3 + 3.21,3 + 2.24,3 + 27,3 + 4.30,3}}{{12}} = 24,8\).

Phương sai của mẫu số liệu ghép nhóm là:

\(\begin{array}{l}{s_1}^2 = \frac{1}{{12}}\left[ {2{{\left( {18,3 - 24,8} \right)}^2} + 3{{\left( {21,3 - 24,8} \right)}^2} + 2{{\left( {24,3 - 24,8} \right)}^2}} \right.\\\left. {\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + {{\left( {27,3 - 24,8} \right)}^2} + 4{{\left( {30,3 - 24,8} \right)}^2}} \right] = 20,75.\end{array}\)

Độ lệch chuẩn của mẫu số liệu ghép nhóm là: \({s_1} = \sqrt {{s_1}^2}  = \sqrt {20,75}  \approx 4,56\).

c) Sai. Xét số liệu ở Huế:

Khoảng biến thiên: \(R = 31,8 - 16,8 = 15\).

Số phần tử của mẫu là \(n = 12\).

Tần số tích lũy của các nhóm lần lượt là \(c{f_1} = 1,c{f_2} = 3,c{f_3} = 6,c{f_4} = 8,c{f_5} = 12\).

Ta có: \(\frac{n}{4} = \frac{{12}}{4} = 3\) suy ra nhóm 2 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 3. Xét nhóm 2 là nhóm \([19,8;22,8)\) có \(s = 19,8,\;h = 3,{n_2} = 2\) và nhóm 1 là nhóm \([16,8;19,8)\) có \(c{f_1} = 1\)

Ta có tứ phân vị thứ nhất là: \({Q_1} = s + \left( {\frac{{3 - c{f_1}}}{{{n_2}}}} \right).h = 19,8 + \left( {\frac{{3 - 1}}{2}} \right).3 = 22,8\).

Ta có: \(\frac{{3n}}{4} = \frac{{3.12}}{4} = 9\) mà \(8 < 9 < 12\) suy ra nhóm 5 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 9.

Xét nhóm 5 là nhóm \(\left[ {28,8;31,8} \right)\) có \(t = 28,8,l = 3,{n_5} = 4\) và nhóm 4 là nhóm \([25,8;28,8)\) có \(c{f_4} = 8\).

Ta có tứ phân vị thứ ba là: \({Q_3} = t + \left( {\frac{{9 - c{f_4}}}{{{n_5}}}} \right).l = 28,8 + \left( {\frac{{9 - 8}}{4}} \right).3 = 29,55\).

Khoảng tứ phân vị của mẫu số liệu ghép nhóm trên là: \({Q_3} - {Q_1} = 29,55 - 22,8 = 6,75\).

Số trung bình cộng của mẫu số liệu ghép nhóm là:

\(\overline {{x_2}}  = \frac{{18,3 + 2.21,3 + 3.24,3 + 2.27,3 + 4.30,3}}{{12}} = 25,8\).

Phương sai của mẫu số liệu ghép nhóm là:

\[\begin{array}{l}s_2^2 = \frac{1}{{12}}\left[ {{{\left( {18,3 - 25,8} \right)}^2} + 3{{\left( {21,3 - 25,8} \right)}^2} + 3{{\left( {24,3 - 25,8} \right)}^2}} \right.\\\left. {\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + 2{{\left( {27,3 - 25,8} \right)}^2} + 4{{\left( {30,3 - 25,8} \right)}^2}} \right] = 15,75.\end{array}\]

d) Đúng. Độ lệch chuẩn của mẫu số liệu ghép nhóm là: \({s_2} = \sqrt {s_2^2}  = \sqrt {15,75}  \approx 3,97\).

Huế có nhiệt độ không khí trung bình tháng đồng đều hơn vì độ lệch chuẩn nhỏ hơn.

Lời giải

a) Đúng. Khoảng biến thiên của chiều cao các cây được chăm sóc theo mỗi phương pháp \(A\) và \(B\) bằng nhau và cùng bằng 50.

b) Đúng. Ước tính số trung bình và độ lệch chuẩn của chiều cao các cây được chăm sóc theo mỗi phương pháp. Cỡ mẫu của hai mẫu số liệu thống kê là \(N = 40\). Ta có bảng tần số ghép nhóm về chiều cao của cây được chăm sóc theo phương pháp \(A\) như sau:

Khoảng biến thiên của chiều cao các cây được chăm sóc theo mỗi phương pháp A và B bằng nhau. (ảnh 2)

Chiều cao trung bình của các cây được chăm sóc theo phương án \(A\) là:

\(\overline {{x_A}}  = \frac{{5.6 + 18.5 + 25.12 + 35.8 + 45.6}}{{40}} = 25\)

Ta có bảng tần số ghép nhóm về chiều cao của cây được chăm sóc theo phương pháp \(B\) như sau:

Khoảng biến thiên của chiều cao các cây được chăm sóc theo mỗi phương pháp A và B bằng nhau. (ảnh 3)

Chiều cao trung bình của các cây được chăm sóc theo phương án \(B\) là:

\(\overline {{x_B}}  = \frac{{5.13 + 15.6 + 25.2 + 35.6 + 45.13}}{{40}} = 25\)cm.

c) Đúng. Độ lệch chuẩn của chiều cao các cây được chăm sóc theo phương án \(A\) là:

\({s_A} = \sqrt {\frac{{{5^2}.6 + {{15}^2}.8 + {{25}^2}.12 + {{35}^2}.8 + {{45}^2}.6}}{{40}} - {{25}^2}}  \approx 12,65\).

d) Sai. Độ lệch chuẩn của chiều cao các cây được chăm sóc theo phương án \(B\) là:

\({s_B} = \sqrt {\frac{{{5^2}.13 + {{15}^2}.6 + {{25}^2}.2 + {{35}^2}.6 + {{45}^2}.13}}{{40}} - {{25}^2}}  \approx 17,03\).

Ta thấy \({s_B} > {s_A}\) nên dựa vào độ lệch chuẩn thì chiều cao của các loại cây được chăm sóc theo phương án \(B\) bị chênh lệch nhiều hơn so với phương án \(A\).

Câu 4

A. \([15;16)\).            
B. \([16;17)\).          
C. \([17;18)\).                 
D. \([18;19)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. 25.                         
B. 30.                       
C. 6.                               
D. 69,8.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP