Câu hỏi:

07/10/2025 71 Lưu

Biểu đồ dưới đây biểu diễn số lượng khách hàng đặt bàn qua hình thức trực tuyến mỗi ngày trong quý II năm 2025 của một nhà hàng. Cột thứ nhất biểu diễn số ngày có từ 1 đến 6 lượt đặt bàn, cột thứ hai biểu diễn số ngày có từ 6 đến 11 lượt đặt bàn; …Khoảng tứ phân vị của mẫu số liệu ghép nhóm cho bởi biểu đồ trên là: (ảnh 1)
Khoảng tứ phân vị của mẫu số liệu ghép nhóm cho bởi biểu đồ trên là:

A. 9,5.                        
B. 8,5.                      
C. 10,5.                          
D. 7,5.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn B

Dựa vào biểu đồ ta lập được bảng ghép nhóm như sau:

Khoảng tứ phân vị của mẫu số liệu ghép nhóm cho bởi biểu đồ trên là: (ảnh 2)

Cỡ mẫu \(n = 92\) và gọi \({x_1},\,{x_2},...,{x_{92}}\) là mẫu số liệu đã cho.

Ta có: \({x_1},\,....,\,{x_{14}} \in \left[ {1\,;\,6} \right)\); \({x_{45}},\,...,\,{x_{69}} \in \left[ {11\,;\,16} \right)\);

          \({x_{70}},\,....,\,{x_{87}} \in \left[ {16\,;\,21} \right)\); \({x_{88}},\,...\,,{x_{92}} \in \left[ {21\,;\,26} \right)\).           

Tứ phân vị thứ nhất của mẫu số liệu là \(\frac{{{x_{23}} + {x_{24}}}}{2} \in \left[ {6\,;\,11} \right)\). Do đó tứ phân vị thứ nhất của mẫu số liệu là \({Q_1} = 6 + \frac{{\frac{{92}}{4} - 14}}{{30}}\left( {11 - 6} \right) = 7,5\).

Tứ phân vị thứ ba của mẫu số liệu là \(\frac{{{x_{69}} + {x_{70}}}}{2} \in \left[ {11\,;\,16} \right)\) và \({x_{70}} \in \left[ {16\,;\,21} \right)\). Do đó tứ phân vị thứ ba của mẫu số liệu là \({Q_3} = 16\).

Vậy khoảng tứ phân vị của mẫu số liệu là: \({\Delta _Q} = {Q_3} - {Q_1} = 16 - 7,5 = 8,5\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng. Xét số liệu ở Hà Nội:

Khoảng biến thiên: \(R = 31,8 - 16,8 = 15\).

Số phần tử của mẫu là \(n = 12\).

Tần số tích lũy của các nhóm lần lượt là \(c{f_1} = 2,c{f_2} = 5,c{f_3} = 7,c{f_4} = 8,c{f_5} = 12\).

Ta có: \(\frac{n}{4} = \frac{{12}}{4} = 3\) mà \(2 < 3 < 5\) suy ra nhóm 2 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 3.

Xét nhóm 2 là nhóm \(\left[ {19,8;22,8} \right)\) có \(s = 19,8,h = 3,{n_2} = 3\) và nhóm 1 là nhóm \(\left[ {16,8;19,8} \right)\) có \(c{f_1} = 2\). Ta có tứ phân vị thứ nhất là: \({Q_1} = s + \left( {\frac{{3 - c{f_1}}}{{{n_2}}}} \right).h = 19,8 + \left( {\frac{{3 - 2}}{3}} \right).3 = 20,8\).

Ta có: \(\frac{{3n}}{4} = \frac{{3.12}}{4} = 9\) mà \(8 < 9 < 12\) suy ra nhóm 5 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 9.

Xét nhóm 5 là nhóm \(\left[ {28,8;31,8} \right)\) có \(t = 28,8,1 = 3,{n_5} = 4\) và nhóm 4 là nhóm \(\left[ {25,8;28,8} \right)\) có \(c{f_4} = 8\).

Ta có tứ phân vị thứ ba là: \({Q_3} = t + \left( {\frac{{9 - c{f_4}}}{{{n_5}}}} \right).l = 28,8 + \left( {\frac{{9 - 8}}{4}} \right).3 = 29,55\).

Khoảng tứ phân vị của mẫu số liệu ghép nhóm trên là: \({Q_3} - {Q_1} = 29,55 - 20,8 = 8,75\) .

b) Sai. Số trung bình cộng của mẫu số liệu ghép nhóm là:

\(\overline {{x_1}}  = \frac{{2.18,3 + 3.21,3 + 2.24,3 + 27,3 + 4.30,3}}{{12}} = 24,8\).

Phương sai của mẫu số liệu ghép nhóm là:

\(\begin{array}{l}{s_1}^2 = \frac{1}{{12}}\left[ {2{{\left( {18,3 - 24,8} \right)}^2} + 3{{\left( {21,3 - 24,8} \right)}^2} + 2{{\left( {24,3 - 24,8} \right)}^2}} \right.\\\left. {\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + {{\left( {27,3 - 24,8} \right)}^2} + 4{{\left( {30,3 - 24,8} \right)}^2}} \right] = 20,75.\end{array}\)

Độ lệch chuẩn của mẫu số liệu ghép nhóm là: \({s_1} = \sqrt {{s_1}^2}  = \sqrt {20,75}  \approx 4,56\).

c) Sai. Xét số liệu ở Huế:

Khoảng biến thiên: \(R = 31,8 - 16,8 = 15\).

Số phần tử của mẫu là \(n = 12\).

Tần số tích lũy của các nhóm lần lượt là \(c{f_1} = 1,c{f_2} = 3,c{f_3} = 6,c{f_4} = 8,c{f_5} = 12\).

Ta có: \(\frac{n}{4} = \frac{{12}}{4} = 3\) suy ra nhóm 2 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 3. Xét nhóm 2 là nhóm \([19,8;22,8)\) có \(s = 19,8,\;h = 3,{n_2} = 2\) và nhóm 1 là nhóm \([16,8;19,8)\) có \(c{f_1} = 1\)

Ta có tứ phân vị thứ nhất là: \({Q_1} = s + \left( {\frac{{3 - c{f_1}}}{{{n_2}}}} \right).h = 19,8 + \left( {\frac{{3 - 1}}{2}} \right).3 = 22,8\).

Ta có: \(\frac{{3n}}{4} = \frac{{3.12}}{4} = 9\) mà \(8 < 9 < 12\) suy ra nhóm 5 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 9.

Xét nhóm 5 là nhóm \(\left[ {28,8;31,8} \right)\) có \(t = 28,8,l = 3,{n_5} = 4\) và nhóm 4 là nhóm \([25,8;28,8)\) có \(c{f_4} = 8\).

Ta có tứ phân vị thứ ba là: \({Q_3} = t + \left( {\frac{{9 - c{f_4}}}{{{n_5}}}} \right).l = 28,8 + \left( {\frac{{9 - 8}}{4}} \right).3 = 29,55\).

Khoảng tứ phân vị của mẫu số liệu ghép nhóm trên là: \({Q_3} - {Q_1} = 29,55 - 22,8 = 6,75\).

Số trung bình cộng của mẫu số liệu ghép nhóm là:

\(\overline {{x_2}}  = \frac{{18,3 + 2.21,3 + 3.24,3 + 2.27,3 + 4.30,3}}{{12}} = 25,8\).

Phương sai của mẫu số liệu ghép nhóm là:

\[\begin{array}{l}s_2^2 = \frac{1}{{12}}\left[ {{{\left( {18,3 - 25,8} \right)}^2} + 3{{\left( {21,3 - 25,8} \right)}^2} + 3{{\left( {24,3 - 25,8} \right)}^2}} \right.\\\left. {\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + 2{{\left( {27,3 - 25,8} \right)}^2} + 4{{\left( {30,3 - 25,8} \right)}^2}} \right] = 15,75.\end{array}\]

d) Đúng. Độ lệch chuẩn của mẫu số liệu ghép nhóm là: \({s_2} = \sqrt {s_2^2}  = \sqrt {15,75}  \approx 3,97\).

Huế có nhiệt độ không khí trung bình tháng đồng đều hơn vì độ lệch chuẩn nhỏ hơn.

Lời giải

a) Cỡ mẫu \(n = 100\). Gọi \({x_1},\,{x_2},\,{x_3},\,...,\,{x_{100}}\) là mẫu số liệu gốc gồm \(100\) lần đi xe buýt của ông Thắng. Khi đó ta có:

\({x_1},\,....,\,{x_{22}} \in \left[ {15\,;\,18} \right)\);                    \({x_{23}},\,...\,,{x_{60}} \in \left[ {18\,;\,21} \right)\);                   \({x_{61}},\,...,\,{x_{87}} \in \left[ {21\,;\,24} \right)\);

          \({x_{88}},\,....,\,{x_{95}} \in \left[ {21\,;\,27} \right)\);                  \({x_{96}},\,...\,,{x_{99}} \in \left[ {27\,;\,30} \right)\);                  \(\,{x_{100}} \in \left[ {30\,;\,33} \right)\).

                 Tứ phân vị thứ nhất của mẫu số liệu gốc là \(\frac{1}{2}\left( {{x_{75}} + {x_{76}}} \right) \in \left[ {18\,;\,21} \right)\).

Do đó tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: \({Q_1} = 18 + \frac{{\frac{{100}}{4} - 22}}{{38}}\left( {21 - 18} \right) = \frac{{693}}{{38}}\).

Tứ phân vị thứ ba của mẫu số liệu gốc là \(\frac{1}{2}\left( {{x_{75}} + {x_{76}}} \right) \in \left[ {21;\,24} \right)\).

Do đó tứ phân vị thứ ba của mẫu số liệu ghép nhóm là:

\({Q_3} = 18 + \frac{{\frac{{3.100}}{4} - \left( {22 + 38} \right)}}{{27}}\left( {24 - 21} \right) = \frac{{68}}{3}\).

Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là \({\Delta _Q} = \frac{{68}}{3} - \frac{{693}}{{38}} = \frac{{505}}{{114}} \approx 4,43\).

b) Trong lần duy nhất ông Thắng đi hết \(32\) phút, thời gian đi của ông thuộc nhóm \(\left[ {30\,;\,33} \right)\).

Vì \({Q_3} + 1,5{\Delta _Q} \approx 29,31 < 30\) nên đây là giá trị ngoại lệ của mẫu số liệu ghép nhóm.

Câu 3

A. \([15;16)\).            
B. \([16;17)\).          
C. \([17;18)\).                 
D. \([18;19)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP