Câu hỏi:

07/10/2025 8 Lưu

Thu nhập theo tháng (đơn vị: triệu đồng) của người lao động ở hai nhà máy như sau:

Thu nhập

\([5;8)\)

\([8;11)\)

\([11;14)\)

\([14;17)\)

\([17;20)\)

Số người của nhà máy A

20

35

45

35

20

Số người của nhà máy B

17

23

30

23

17

Tính mức thu nhập trung bình của người lao động ở hai nhà máy trên. Dựa vào khoảng tứ phân vị, hãy xác định xem mức thu nhập của người lao động ở nhà máy nào biến động nhiều hơn.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải

Ta có bảng số liệu với giá trị đại diện của nhóm là:

Tính mức thu nhập trung bình của người lao động ở hai nhà máy trên. Dựa vào khoảng tứ phân vị, hãy xác định xem mức thu nhập của người lao động ở nhà máy nào biến động nhiều hơn. (ảnh 1)

Mức thu nhập trung bình của người lao động nhà máy A là:

\(\frac{{6,5.20 + 9,5.35 + 12,5.45 + 15,5.35 + 18,5.20}}{{20 + 35 + 45 + 35 + 20}} = \frac{{25}}{2}\) (triệu đồng).

Mức thu nhập trung bình của người lao động nhà máy B là:

\(\frac{{6,5.17 + 9,5.23 + 12,5.30 + 15,5.23 + 18,5.17}}{{17 + 23 + 30 + 23 + 17}} = \frac{{25}}{2}\) (triệu đồng).

Nhà máy \(A\): Ta có cỡ mẫu \(n = 155\). Giả sử \({x_1},{x_2}, \ldots ,{x_{155}}\) là mức thu nhập của người lao động nhà máy \(A\) và giả sử dãy số liệu gốc này đã được sắp xếp theo thứ tự không giảm.

Vì \(\frac{n}{4} = 38,75\) và \(20 < 38,75 < 20 + 35\) nên nhóm chứa tứ phân vị thứ nhất là nhóm \([8;11)\) và tứ phân vị thứ nhất là: \({Q_1} = 8 + \frac{{\frac{{155}}{4} - 20}}{{35}}.3 = \frac{{269}}{{28}}\).

Vì \(\frac{{3n}}{4} = 116,25\) và \(20 + 35 + 45 < 116,25 < 20 + 35 + 45 + 35\) nên nhóm chứa tứ phân vị thứ ba là nhóm \([14;17)\) và tứ phân vị thứ ba là: \({Q_3} = 14 + \frac{{\frac{{3.155}}{4} - (20 + 35 + 45)}}{{35}}.3 = \frac{{431}}{{28}}\).

Khoảng biến thiên của mẫu số liệu ghép nhóm là: \({\Delta _{{Q_1}}} = \frac{{431}}{{28}} - \frac{{269}}{{28}} = \frac{{81}}{{14}}\).

Nhà máy B: Ta có cỡ mẫu \(n = 110\). Giả sử \({x_1},{x_2}, \ldots ,{x_{110}}\) là mức thu nhập của người lao động nhà máy \(B\) và giả sử dãy số liệu gốc này đã được sắp xếp theo thứ tự không giảm.

Vì \(\frac{n}{4} = 27,5\) và \(17 < 27,5 < 17 + 23\) nên nhóm chứa tứ phân vị thứ nhất là nhóm \([8;11)\) và tứ phân vị thứ nhất là: \({Q'_1} = 8 + \frac{{\frac{{110}}{4} - 17}}{{23}}.3 = \frac{{431}}{{46}}\).

Vì \(\frac{{3n}}{4} = 82,5\) và \(17 + 23 + 30 < 82,5 < 17 + 23 + 30 + 23\) nên nhóm chứa tứ phân vị thứ ba là nhóm \([14;17)\) và tứ phân vị thứ ba là: \({Q'_3} = 14 + \frac{{\frac{{3.110}}{4} - (17 + 23 + 30)}}{{23}}.3 = \frac{{719}}{{46}}\).

Khoảng biến thiên của mẫu số liệu ghép nhóm là: \({\Delta _{{Q_2}}} = \frac{{719}}{{46}} - \frac{{431}}{{46}} = \frac{{144}}{{23}}\).

Vì \({\Delta _{{Q_1}}} < {\Delta _{{Q_2}}}\) nên mức thu nhập của người lao động nhà máy B biến động nhiều hơn.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn B

Số trung bình cộng của mẫu số liệu ghép nhóm là:

\(\bar x = \frac{{4.42,5 + 14.47,5 + 8.52,5 + 10.57,5 + 6.62,5 + 2.67,5}}{{44}} = \frac{{585}}{{11}}\).

Phương sai của mẫu số liệu ghép nhóm là:

\[\begin{array}{l}{s^2} = \frac{1}{{44}}\left[ {4{{\left( {42,5 - \frac{{585}}{{11}}} \right)}^2} + 14{{\left( {47,5 - \frac{{585}}{{11}}} \right)}^2} + 8{{\left( {52,5 - \frac{{585}}{{11}}} \right)}^2} + 10{{\left( {57,5 - \frac{{585}}{{11}}} \right)}^2}} \right.\\\left. {\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + 6{{\left( {62,5 - \frac{{585}}{{11}}} \right)}^2} + 2.{{\left( {67,5 - \frac{{585}}{{11}}} \right)}^2}} \right] \approx 46,12.\end{array}\]

Độ lệch chuẩn của mẫu số liệu ghép nhóm là: \(s = \sqrt {{s^2}}  = \sqrt {46,12}  \approx 6,8\).

Lời giải

a) Cỡ mẫu là \(n = 3 + 12 + 15 + 8 = 38\). Gọi \({x_1}, \ldots ,{x_{38}}\) là thời gian chờ khám bệnh của 38 bệnh nhân này và giả sử rằng dãy số liệu gốc này đã được sắp xếp theo thứ tự tăng dần. Tứ phân vị thứ nhất của mẫu số liệu gốc là \({x_{10}}\) nên nhóm chứa tứ phân vị thứ nhất là nhóm \([5;10)\) và ta có:

\({Q_1} = 5 + \left[ {\frac{{\frac{{38}}{4} - 3}}{{12}}} \right].5 \approx 7,71.\)

Tứ phân vị thứ ba của mẫu số liệu gốc là \({x_{29}}\) nên nhóm chứa tứ phân vị thứ ba là nhóm \([10;15)\) và ta có: \({Q_3} = 10 + \left[ {\frac{{\frac{{3 \cdot 38}}{4} - 15}}{{15}}} \right].5 = 14,5.\)

Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \({\Delta _Q} = {Q_3} - {Q_1} \approx 14,5 - 7,71 = 6,79\).

b) Do \({\Delta _Q} = 6,79 < 9,23\) nên thời gian chờ của bệnh nhân tại phòng khám \(Y\) phân tán hơn thời gian chờ của bệnh nhân tại phòng khám \(X\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP