Thống kê tổng số giờ nắng trong tháng 9 tại một trạm quan trắc đặt ở Cà Mau trong các năm từ 2002 đến 2021 được thống kê như sau:

a) Hãy tính phương sai và độ lệch chuẩn của mẫu số liệu trên.
b) Hãy lập bảng tần số ghép nhóm với nhóm đầu tiên là \(\left[ {80;98} \right)\) và độ dài mỗi nhóm bằng 18. Tính phương sai, độ lệch chuẩn của mẫu số liệu ghép nhóm.
c) Hãy tính sai số tương đối của độ lệch chuẩn của mẫu số liệu ghép nhóm so với độ lệch chuẩn của mẫu số liệu gốc.
(Kết quả các phép tính làm tròn đến hàng phần nghìn)
Thống kê tổng số giờ nắng trong tháng 9 tại một trạm quan trắc đặt ở Cà Mau trong các năm từ 2002 đến 2021 được thống kê như sau:

a) Hãy tính phương sai và độ lệch chuẩn của mẫu số liệu trên.
b) Hãy lập bảng tần số ghép nhóm với nhóm đầu tiên là \(\left[ {80;98} \right)\) và độ dài mỗi nhóm bằng 18. Tính phương sai, độ lệch chuẩn của mẫu số liệu ghép nhóm.
c) Hãy tính sai số tương đối của độ lệch chuẩn của mẫu số liệu ghép nhóm so với độ lệch chuẩn của mẫu số liệu gốc.
(Kết quả các phép tính làm tròn đến hàng phần nghìn)
Quảng cáo
Trả lời:
a) Cỡ mẫu là \(n = 20\).
Số trung bình của mẫu số liệu trên là: \({\overline x _1} = \frac{{111,6 + 134,9 + \ldots + 114}}{{20}} = 122,755.\)
Phương sai của mẫu số liệu trên là: \(S_1^2 = \frac{1}{{20}}\left( {111,{6^2} + 134,{9^2} + \ldots + {{114}^2}} \right) - 122,{755^2} \approx 515,453.\)
Độ lệch chuẩn của mẫu số liệu trên là: \({S_1} \approx \sqrt {515,453} \approx 22,704.\)
b) Ta có bảng sau:

Số trung bình của mẫu số liệu ghép nhóm là: \[{\overline x _2} = \frac{{3.89 + 6.107 + 3.125 + 5.143 + 3.161}}{{20}} = 124,1.\]
Phương sai của mẫu số liệu ghép nhóm là
\(S_2^2 = \frac{1}{{20}}\left( {{{3.89}^2} + {{6.107}^2} + {{3.125}^2} + {{5.143}^2} + {{3.161}^2}} \right) - 124,{1^2} = 566,19.\)
Độ lệch chuẩn của mẫu số liệu ghép nhóm là: \({S_2} = \sqrt {566,19} \approx 23,795.\)
c) Sai số tương đối của độ lệch chuẩn của mẫu số liệu ghép nhóm so với độ lệch chuẩn của mẫu số liệu gốc là: \(\frac{{\left| {{S_2} - {S_1}} \right|}}{{{S_1}}} = \frac{{\left| {23,795 - 22,704} \right|}}{{22,704}} \cdot 100{\rm{\% }} \approx 4,805{\rm{\% }}{\rm{.\;}}\)
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đúng. Xét số liệu ở Hà Nội:
Khoảng biến thiên: \(R = 31,8 - 16,8 = 15\).
Số phần tử của mẫu là \(n = 12\).
Tần số tích lũy của các nhóm lần lượt là \(c{f_1} = 2,c{f_2} = 5,c{f_3} = 7,c{f_4} = 8,c{f_5} = 12\).
Ta có: \(\frac{n}{4} = \frac{{12}}{4} = 3\) mà \(2 < 3 < 5\) suy ra nhóm 2 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 3.
Xét nhóm 2 là nhóm \(\left[ {19,8;22,8} \right)\) có \(s = 19,8,h = 3,{n_2} = 3\) và nhóm 1 là nhóm \(\left[ {16,8;19,8} \right)\) có \(c{f_1} = 2\). Ta có tứ phân vị thứ nhất là: \({Q_1} = s + \left( {\frac{{3 - c{f_1}}}{{{n_2}}}} \right).h = 19,8 + \left( {\frac{{3 - 2}}{3}} \right).3 = 20,8\).
Ta có: \(\frac{{3n}}{4} = \frac{{3.12}}{4} = 9\) mà \(8 < 9 < 12\) suy ra nhóm 5 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 9.
Xét nhóm 5 là nhóm \(\left[ {28,8;31,8} \right)\) có \(t = 28,8,1 = 3,{n_5} = 4\) và nhóm 4 là nhóm \(\left[ {25,8;28,8} \right)\) có \(c{f_4} = 8\).
Ta có tứ phân vị thứ ba là: \({Q_3} = t + \left( {\frac{{9 - c{f_4}}}{{{n_5}}}} \right).l = 28,8 + \left( {\frac{{9 - 8}}{4}} \right).3 = 29,55\).
Khoảng tứ phân vị của mẫu số liệu ghép nhóm trên là: \({Q_3} - {Q_1} = 29,55 - 20,8 = 8,75\) .
b) Sai. Số trung bình cộng của mẫu số liệu ghép nhóm là:
\(\overline {{x_1}} = \frac{{2.18,3 + 3.21,3 + 2.24,3 + 27,3 + 4.30,3}}{{12}} = 24,8\).
Phương sai của mẫu số liệu ghép nhóm là:
\(\begin{array}{l}{s_1}^2 = \frac{1}{{12}}\left[ {2{{\left( {18,3 - 24,8} \right)}^2} + 3{{\left( {21,3 - 24,8} \right)}^2} + 2{{\left( {24,3 - 24,8} \right)}^2}} \right.\\\left. {\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + {{\left( {27,3 - 24,8} \right)}^2} + 4{{\left( {30,3 - 24,8} \right)}^2}} \right] = 20,75.\end{array}\)
Độ lệch chuẩn của mẫu số liệu ghép nhóm là: \({s_1} = \sqrt {{s_1}^2} = \sqrt {20,75} \approx 4,56\).
c) Sai. Xét số liệu ở Huế:
Khoảng biến thiên: \(R = 31,8 - 16,8 = 15\).
Số phần tử của mẫu là \(n = 12\).
Tần số tích lũy của các nhóm lần lượt là \(c{f_1} = 1,c{f_2} = 3,c{f_3} = 6,c{f_4} = 8,c{f_5} = 12\).
Ta có: \(\frac{n}{4} = \frac{{12}}{4} = 3\) suy ra nhóm 2 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 3. Xét nhóm 2 là nhóm \([19,8;22,8)\) có \(s = 19,8,\;h = 3,{n_2} = 2\) và nhóm 1 là nhóm \([16,8;19,8)\) có \(c{f_1} = 1\)
Ta có tứ phân vị thứ nhất là: \({Q_1} = s + \left( {\frac{{3 - c{f_1}}}{{{n_2}}}} \right).h = 19,8 + \left( {\frac{{3 - 1}}{2}} \right).3 = 22,8\).
Ta có: \(\frac{{3n}}{4} = \frac{{3.12}}{4} = 9\) mà \(8 < 9 < 12\) suy ra nhóm 5 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 9.
Xét nhóm 5 là nhóm \(\left[ {28,8;31,8} \right)\) có \(t = 28,8,l = 3,{n_5} = 4\) và nhóm 4 là nhóm \([25,8;28,8)\) có \(c{f_4} = 8\).
Ta có tứ phân vị thứ ba là: \({Q_3} = t + \left( {\frac{{9 - c{f_4}}}{{{n_5}}}} \right).l = 28,8 + \left( {\frac{{9 - 8}}{4}} \right).3 = 29,55\).
Khoảng tứ phân vị của mẫu số liệu ghép nhóm trên là: \({Q_3} - {Q_1} = 29,55 - 22,8 = 6,75\).
Số trung bình cộng của mẫu số liệu ghép nhóm là:
\(\overline {{x_2}} = \frac{{18,3 + 2.21,3 + 3.24,3 + 2.27,3 + 4.30,3}}{{12}} = 25,8\).
Phương sai của mẫu số liệu ghép nhóm là:
\[\begin{array}{l}s_2^2 = \frac{1}{{12}}\left[ {{{\left( {18,3 - 25,8} \right)}^2} + 3{{\left( {21,3 - 25,8} \right)}^2} + 3{{\left( {24,3 - 25,8} \right)}^2}} \right.\\\left. {\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + 2{{\left( {27,3 - 25,8} \right)}^2} + 4{{\left( {30,3 - 25,8} \right)}^2}} \right] = 15,75.\end{array}\]
d) Đúng. Độ lệch chuẩn của mẫu số liệu ghép nhóm là: \({s_2} = \sqrt {s_2^2} = \sqrt {15,75} \approx 3,97\).
Huế có nhiệt độ không khí trung bình tháng đồng đều hơn vì độ lệch chuẩn nhỏ hơn.
Lời giải
a) Đúng. Khoảng biến thiên của chiều cao các cây được chăm sóc theo mỗi phương pháp \(A\) và \(B\) bằng nhau và cùng bằng 50.
b) Đúng. Ước tính số trung bình và độ lệch chuẩn của chiều cao các cây được chăm sóc theo mỗi phương pháp. Cỡ mẫu của hai mẫu số liệu thống kê là \(N = 40\). Ta có bảng tần số ghép nhóm về chiều cao của cây được chăm sóc theo phương pháp \(A\) như sau:

Chiều cao trung bình của các cây được chăm sóc theo phương án \(A\) là:
\(\overline {{x_A}} = \frac{{5.6 + 18.5 + 25.12 + 35.8 + 45.6}}{{40}} = 25\)
Ta có bảng tần số ghép nhóm về chiều cao của cây được chăm sóc theo phương pháp \(B\) như sau:

Chiều cao trung bình của các cây được chăm sóc theo phương án \(B\) là:
\(\overline {{x_B}} = \frac{{5.13 + 15.6 + 25.2 + 35.6 + 45.13}}{{40}} = 25\)cm.
c) Đúng. Độ lệch chuẩn của chiều cao các cây được chăm sóc theo phương án \(A\) là:
\({s_A} = \sqrt {\frac{{{5^2}.6 + {{15}^2}.8 + {{25}^2}.12 + {{35}^2}.8 + {{45}^2}.6}}{{40}} - {{25}^2}} \approx 12,65\).
d) Sai. Độ lệch chuẩn của chiều cao các cây được chăm sóc theo phương án \(B\) là:
\({s_B} = \sqrt {\frac{{{5^2}.13 + {{15}^2}.6 + {{25}^2}.2 + {{35}^2}.6 + {{45}^2}.13}}{{40}} - {{25}^2}} \approx 17,03\).
Ta thấy \({s_B} > {s_A}\) nên dựa vào độ lệch chuẩn thì chiều cao của các loại cây được chăm sóc theo phương án \(B\) bị chênh lệch nhiều hơn so với phương án \(A\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.




