Thống kê tổng số giờ nắng trong tháng 9 tại một trạm quan trắc đặt ở Cà Mau trong các năm từ 2002 đến 2021 được thống kê như sau:

a) Hãy tính phương sai và độ lệch chuẩn của mẫu số liệu trên.
b) Hãy lập bảng tần số ghép nhóm với nhóm đầu tiên là \(\left[ {80;98} \right)\) và độ dài mỗi nhóm bằng 18. Tính phương sai, độ lệch chuẩn của mẫu số liệu ghép nhóm.
c) Hãy tính sai số tương đối của độ lệch chuẩn của mẫu số liệu ghép nhóm so với độ lệch chuẩn của mẫu số liệu gốc.
(Kết quả các phép tính làm tròn đến hàng phần nghìn)
Thống kê tổng số giờ nắng trong tháng 9 tại một trạm quan trắc đặt ở Cà Mau trong các năm từ 2002 đến 2021 được thống kê như sau:

a) Hãy tính phương sai và độ lệch chuẩn của mẫu số liệu trên.
b) Hãy lập bảng tần số ghép nhóm với nhóm đầu tiên là \(\left[ {80;98} \right)\) và độ dài mỗi nhóm bằng 18. Tính phương sai, độ lệch chuẩn của mẫu số liệu ghép nhóm.
c) Hãy tính sai số tương đối của độ lệch chuẩn của mẫu số liệu ghép nhóm so với độ lệch chuẩn của mẫu số liệu gốc.
(Kết quả các phép tính làm tròn đến hàng phần nghìn)
Quảng cáo
Trả lời:
a) Cỡ mẫu là \(n = 20\).
Số trung bình của mẫu số liệu trên là: \({\overline x _1} = \frac{{111,6 + 134,9 + \ldots + 114}}{{20}} = 122,755.\)
Phương sai của mẫu số liệu trên là: \(S_1^2 = \frac{1}{{20}}\left( {111,{6^2} + 134,{9^2} + \ldots + {{114}^2}} \right) - 122,{755^2} \approx 515,453.\)
Độ lệch chuẩn của mẫu số liệu trên là: \({S_1} \approx \sqrt {515,453} \approx 22,704.\)
b) Ta có bảng sau:

Số trung bình của mẫu số liệu ghép nhóm là: \[{\overline x _2} = \frac{{3.89 + 6.107 + 3.125 + 5.143 + 3.161}}{{20}} = 124,1.\]
Phương sai của mẫu số liệu ghép nhóm là
\(S_2^2 = \frac{1}{{20}}\left( {{{3.89}^2} + {{6.107}^2} + {{3.125}^2} + {{5.143}^2} + {{3.161}^2}} \right) - 124,{1^2} = 566,19.\)
Độ lệch chuẩn của mẫu số liệu ghép nhóm là: \({S_2} = \sqrt {566,19} \approx 23,795.\)
c) Sai số tương đối của độ lệch chuẩn của mẫu số liệu ghép nhóm so với độ lệch chuẩn của mẫu số liệu gốc là: \(\frac{{\left| {{S_2} - {S_1}} \right|}}{{{S_1}}} = \frac{{\left| {23,795 - 22,704} \right|}}{{22,704}} \cdot 100{\rm{\% }} \approx 4,805{\rm{\% }}{\rm{.\;}}\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đúng. Xét số liệu ở Hà Nội:
Khoảng biến thiên: \(R = 31,8 - 16,8 = 15\).
Số phần tử của mẫu là \(n = 12\).
Tần số tích lũy của các nhóm lần lượt là \(c{f_1} = 2,c{f_2} = 5,c{f_3} = 7,c{f_4} = 8,c{f_5} = 12\).
Ta có: \(\frac{n}{4} = \frac{{12}}{4} = 3\) mà \(2 < 3 < 5\) suy ra nhóm 2 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 3.
Xét nhóm 2 là nhóm \(\left[ {19,8;22,8} \right)\) có \(s = 19,8,h = 3,{n_2} = 3\) và nhóm 1 là nhóm \(\left[ {16,8;19,8} \right)\) có \(c{f_1} = 2\). Ta có tứ phân vị thứ nhất là: \({Q_1} = s + \left( {\frac{{3 - c{f_1}}}{{{n_2}}}} \right).h = 19,8 + \left( {\frac{{3 - 2}}{3}} \right).3 = 20,8\).
Ta có: \(\frac{{3n}}{4} = \frac{{3.12}}{4} = 9\) mà \(8 < 9 < 12\) suy ra nhóm 5 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 9.
Xét nhóm 5 là nhóm \(\left[ {28,8;31,8} \right)\) có \(t = 28,8,1 = 3,{n_5} = 4\) và nhóm 4 là nhóm \(\left[ {25,8;28,8} \right)\) có \(c{f_4} = 8\).
Ta có tứ phân vị thứ ba là: \({Q_3} = t + \left( {\frac{{9 - c{f_4}}}{{{n_5}}}} \right).l = 28,8 + \left( {\frac{{9 - 8}}{4}} \right).3 = 29,55\).
Khoảng tứ phân vị của mẫu số liệu ghép nhóm trên là: \({Q_3} - {Q_1} = 29,55 - 20,8 = 8,75\) .
b) Sai. Số trung bình cộng của mẫu số liệu ghép nhóm là:
\(\overline {{x_1}} = \frac{{2.18,3 + 3.21,3 + 2.24,3 + 27,3 + 4.30,3}}{{12}} = 24,8\).
Phương sai của mẫu số liệu ghép nhóm là:
\(\begin{array}{l}{s_1}^2 = \frac{1}{{12}}\left[ {2{{\left( {18,3 - 24,8} \right)}^2} + 3{{\left( {21,3 - 24,8} \right)}^2} + 2{{\left( {24,3 - 24,8} \right)}^2}} \right.\\\left. {\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + {{\left( {27,3 - 24,8} \right)}^2} + 4{{\left( {30,3 - 24,8} \right)}^2}} \right] = 20,75.\end{array}\)
Độ lệch chuẩn của mẫu số liệu ghép nhóm là: \({s_1} = \sqrt {{s_1}^2} = \sqrt {20,75} \approx 4,56\).
c) Sai. Xét số liệu ở Huế:
Khoảng biến thiên: \(R = 31,8 - 16,8 = 15\).
Số phần tử của mẫu là \(n = 12\).
Tần số tích lũy của các nhóm lần lượt là \(c{f_1} = 1,c{f_2} = 3,c{f_3} = 6,c{f_4} = 8,c{f_5} = 12\).
Ta có: \(\frac{n}{4} = \frac{{12}}{4} = 3\) suy ra nhóm 2 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 3. Xét nhóm 2 là nhóm \([19,8;22,8)\) có \(s = 19,8,\;h = 3,{n_2} = 2\) và nhóm 1 là nhóm \([16,8;19,8)\) có \(c{f_1} = 1\)
Ta có tứ phân vị thứ nhất là: \({Q_1} = s + \left( {\frac{{3 - c{f_1}}}{{{n_2}}}} \right).h = 19,8 + \left( {\frac{{3 - 1}}{2}} \right).3 = 22,8\).
Ta có: \(\frac{{3n}}{4} = \frac{{3.12}}{4} = 9\) mà \(8 < 9 < 12\) suy ra nhóm 5 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 9.
Xét nhóm 5 là nhóm \(\left[ {28,8;31,8} \right)\) có \(t = 28,8,l = 3,{n_5} = 4\) và nhóm 4 là nhóm \([25,8;28,8)\) có \(c{f_4} = 8\).
Ta có tứ phân vị thứ ba là: \({Q_3} = t + \left( {\frac{{9 - c{f_4}}}{{{n_5}}}} \right).l = 28,8 + \left( {\frac{{9 - 8}}{4}} \right).3 = 29,55\).
Khoảng tứ phân vị của mẫu số liệu ghép nhóm trên là: \({Q_3} - {Q_1} = 29,55 - 22,8 = 6,75\).
Số trung bình cộng của mẫu số liệu ghép nhóm là:
\(\overline {{x_2}} = \frac{{18,3 + 2.21,3 + 3.24,3 + 2.27,3 + 4.30,3}}{{12}} = 25,8\).
Phương sai của mẫu số liệu ghép nhóm là:
\[\begin{array}{l}s_2^2 = \frac{1}{{12}}\left[ {{{\left( {18,3 - 25,8} \right)}^2} + 3{{\left( {21,3 - 25,8} \right)}^2} + 3{{\left( {24,3 - 25,8} \right)}^2}} \right.\\\left. {\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + 2{{\left( {27,3 - 25,8} \right)}^2} + 4{{\left( {30,3 - 25,8} \right)}^2}} \right] = 15,75.\end{array}\]
d) Đúng. Độ lệch chuẩn của mẫu số liệu ghép nhóm là: \({s_2} = \sqrt {s_2^2} = \sqrt {15,75} \approx 3,97\).
Huế có nhiệt độ không khí trung bình tháng đồng đều hơn vì độ lệch chuẩn nhỏ hơn.
Lời giải
a) Cỡ mẫu \(n = 100\). Gọi \({x_1},\,{x_2},\,{x_3},\,...,\,{x_{100}}\) là mẫu số liệu gốc gồm \(100\) lần đi xe buýt của ông Thắng. Khi đó ta có:
\({x_1},\,....,\,{x_{22}} \in \left[ {15\,;\,18} \right)\); \({x_{23}},\,...\,,{x_{60}} \in \left[ {18\,;\,21} \right)\); \({x_{61}},\,...,\,{x_{87}} \in \left[ {21\,;\,24} \right)\);
\({x_{88}},\,....,\,{x_{95}} \in \left[ {21\,;\,27} \right)\); \({x_{96}},\,...\,,{x_{99}} \in \left[ {27\,;\,30} \right)\); \(\,{x_{100}} \in \left[ {30\,;\,33} \right)\).
Tứ phân vị thứ nhất của mẫu số liệu gốc là \(\frac{1}{2}\left( {{x_{75}} + {x_{76}}} \right) \in \left[ {18\,;\,21} \right)\).
Do đó tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: \({Q_1} = 18 + \frac{{\frac{{100}}{4} - 22}}{{38}}\left( {21 - 18} \right) = \frac{{693}}{{38}}\).
Tứ phân vị thứ ba của mẫu số liệu gốc là \(\frac{1}{2}\left( {{x_{75}} + {x_{76}}} \right) \in \left[ {21;\,24} \right)\).
Do đó tứ phân vị thứ ba của mẫu số liệu ghép nhóm là:
\({Q_3} = 18 + \frac{{\frac{{3.100}}{4} - \left( {22 + 38} \right)}}{{27}}\left( {24 - 21} \right) = \frac{{68}}{3}\).
Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là \({\Delta _Q} = \frac{{68}}{3} - \frac{{693}}{{38}} = \frac{{505}}{{114}} \approx 4,43\).
b) Trong lần duy nhất ông Thắng đi hết \(32\) phút, thời gian đi của ông thuộc nhóm \(\left[ {30\,;\,33} \right)\).
Vì \({Q_3} + 1,5{\Delta _Q} \approx 29,31 < 30\) nên đây là giá trị ngoại lệ của mẫu số liệu ghép nhóm.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



