Qua nghiên cứu, người ta nhận thấy rằng với mỗi người trung bình nhiệt độ môi trường giảm đi \[1^\circ {\rm{C}}\]thì lượng calo cần tăng thêm khoảng \[30\] calo. Tại \[21^\circ {\rm{C}}\], một người làm việc cần sử dụng khoảng 3000 calo mỗi ngày. Người ta thấy mối quan hệ giữa hai đại lượng này là một hàm số bậc nhất \[y = ax + b\] (\[x\] là đại lượng biểu thị cho nhiệt độ môi trường và \[y\]là đại lượng biểu thị cho lượng calo). Nếu một người làm việc ở sa mạc Sahara trong nhiệt độ \[50^\circ {\rm{C}}\] thì cần bao nhiêu calo?
Câu hỏi trong đề: Đề kiểm tra Toán 9 Cánh diều Chương 1 có đáp án !!
Quảng cáo
Trả lời:

Thay\(x = 21^\circ {\rm{C}}\); \(y = 3000\) calo vào \(y = a.x + b\) nên \(21a + b = 3\,\,000\). (1)
Thay\(x = 20^\circ {\rm{C}}\); \(y = 3030\) calo calo vào \(y = a.x + b\)nên \(20a + b = 3\,\,030\). (2)
Từ (1) và (2) ta có hệ phương trình\(\left\{ \begin{array}{l}21a + b = 3\,\,000\\20a + b = 3\,\,030\end{array} \right.\).
Giải hệ phương trình, ta được \(\left\{ \begin{array}{l}a = - 30\\b = 3630\end{array} \right.\).
Ta có hàm số có dạng \(y = - 30x + 3630\).
Thay \(x = 50^\circ {\rm{C}}\) vào \(y = - 30x + 3630\) suy ra \(y = - 30 \cdot 50 + 3\,\,630 = 2\,\,130\).
Vậy một người làm việc ở sa mạc Sahara trong nhiệt độ \(50^\circ {\rm{C}}\) thì cần 2130 calo.
Đáp án: 2130.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
B. \[\left\{ \begin{array}{l}15x - y = 5\\16x - y = - 3.\end{array} \right.\]
Lời giải
Chọn A
Xếp mỗi xe \[15\] tấn thì còn thừa lại \[5\] tấn, suy ra số hàng chở được là \[15x\] tấn.
Do đó ta có phương trình \[15x = y - 5\] hay \[15x - y = - 5\] (1)
Xếp mỗi xe \[16\] tấn thì chở được thêm \[3\] tấn nữa, suy ra số hàng chở được là \[16x\] tấn.
Do đó ta có phương trình \[16x = y + 3\] hay \[16x - y = 3\] (2)
Từ (1), (2), ta có hệ phương trình \[\left\{ \begin{array}{l}15x - y = - 5\\16x - y = 3.\end{array} \right.\]
Lời giải
a) Đúng. Phương trình \[\frac{{2x + m}}{{x - 1}} = \frac{{5\left( {x - 1} \right)}}{{x + 1}}\] (với \(m\) là tham số) là phương trình chứa ẩn ở mẫu.
b) Sai. Điều kiện xác định của phương trình đã cho khi \(x \ne 1\) và \(x \ne - 1.\)
Do đó, khi \(x = 1\) và \(x = - 1\) thì phương trình đã cho không xác định.
c) Sai. Với \[x = \frac{1}{3}\] thì \[\frac{{2 \cdot \frac{1}{3} + m}}{{\frac{1}{3} - 1}} = \frac{{5\left( {\frac{1}{3} - 1} \right)}}{{\frac{1}{3} + 1}}\] hay \[\frac{{\frac{2}{3} + m}}{{\frac{{ - 2}}{3}}} = \frac{{ - 5}}{2}\] nên \[\frac{2}{3} + m = \frac{5}{3}\], suy ra \[m = 1.\]
d) Đúng. Với \(m = - 2\) thì phương trình đã cho trở thành:
\[\frac{{2x - 2}}{{x - 1}} = \frac{{5\left( {x - 1} \right)}}{{x + 1}}\]
\[\frac{{5\left( {x - 1} \right)}}{{x + 1}} - \frac{{2\left( {x - 1} \right)}}{{x - 1}} = 0\]
\[\frac{5}{{x + 1}} - \frac{2}{{x - 1}} = 0\] (vì \(x \ne 1\))
\[\frac{{5\left( {x - 1} \right)}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} - \frac{{2\left( {x + 1} \right)}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} = 0\]
\[5\left( {x - 1} \right) - 2\left( {x + 1} \right) = 0\]
\[5x - 5 - 2x - 2 = 0\]
\[3x = 7\]
\[x = \frac{7}{3}\] (TMĐK).
Vậy với \(m = - 2\) thì phương trình đã cho có nghiệm \[x = \frac{7}{3}\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \[\left\{ \begin{array}{l}x \in \mathbb{R}\\y = - \frac{a}{b}x + \frac{c}{b}\end{array} \right.\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \(m = 1\).
B. \(m = - 1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.