Câu hỏi:

08/10/2025 34 Lưu

Dạng 2. Trắc nghiệm đúng sai

Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.

Cho phương trình \[\frac{{2x + m}}{{x - 1}} = \frac{{5\left( {x - 1} \right)}}{{x + 1}}\] (với \(m\) là tham số).

a) Phương trình đã cho là phương trình chứa ẩn ở mẫu.

b) Khi \(x = 1\) và \(x =  - 1\) thì phương trình đã cho không xác định.

c) Khi \[x = \frac{1}{3}\], ta thay vào phương trình đã cho ta tìm được \(m =  - 1\).

d) Với \(m =  - 2\) thì phương trình có nghiệm \[x = \frac{7}{3}.\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng. Phương trình \[\frac{{2x + m}}{{x - 1}} = \frac{{5\left( {x - 1} \right)}}{{x + 1}}\] (với \(m\) là tham số) là phương trình chứa ẩn ở mẫu.

b) Sai. Điều kiện xác định của phương trình đã cho khi \(x \ne 1\) và \(x \ne  - 1.\)

Do đó, khi \(x = 1\) và \(x =  - 1\) thì phương trình đã cho không xác định.

c) Sai. Với \[x = \frac{1}{3}\] thì \[\frac{{2 \cdot \frac{1}{3} + m}}{{\frac{1}{3} - 1}} = \frac{{5\left( {\frac{1}{3} - 1} \right)}}{{\frac{1}{3} + 1}}\] hay \[\frac{{\frac{2}{3} + m}}{{\frac{{ - 2}}{3}}} = \frac{{ - 5}}{2}\] nên \[\frac{2}{3} + m = \frac{5}{3}\], suy ra \[m = 1.\]

d) Đúng. Với \(m =  - 2\) thì phương trình đã cho trở thành:

\[\frac{{2x - 2}}{{x - 1}} = \frac{{5\left( {x - 1} \right)}}{{x + 1}}\]

\[\frac{{5\left( {x - 1} \right)}}{{x + 1}} - \frac{{2\left( {x - 1} \right)}}{{x - 1}} = 0\]

\[\frac{5}{{x + 1}} - \frac{2}{{x - 1}} = 0\] (vì \(x \ne 1\))

\[\frac{{5\left( {x - 1} \right)}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} - \frac{{2\left( {x + 1} \right)}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} = 0\]

\[5\left( {x - 1} \right) - 2\left( {x + 1} \right) = 0\]

\[5x - 5 - 2x - 2 = 0\]

\[3x = 7\]

\[x = \frac{7}{3}\] (TMĐK).

Vậy với \(m =  - 2\) thì phương trình đã cho có nghiệm \[x = \frac{7}{3}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Sai. Thay \(x = 2\,;\,\,y = 5\) vào phương trình \(2x + 5y = 7\), ta được \(2 \cdot 2 + 5 \cdot 5 = 29 \ne 7\).

Do đó, cặp số \(\left( {2;5} \right)\) không phải là nghiệm của phương trình.

b) Đúng. Ta có \(2x + 5y = 7\), suy ra \(2x = 7 - 5y\).

c) Đúng. Ta có \(2x + 5y = 7\) suy ra \(y = \frac{{ - 2}}{5}x + \frac{7}{5} =  - 0,4x + 1,4\).

Do đó \(a - b =  - 0,4 - 1,4 =  - 1,8\).

d) Sai. Ta có \(ab =  - 0,4 \cdot 1,4 =  - 0,56\).

Lời giải

Gọi thời gian làm việc một mình của người thứ nhất và người thứ hai lần lượt là\[x\], \[y\] (ngày)

Điều kiện: O10-2024-GV154 \[x\], \[y > 0\]

Trong một ngày, người thứ nhất làm được\[\frac{1}{x}\] (công việc), người thứ hai làm được \[\frac{1}{y}\] (công việc).

Do năng suất trong một ngày của người thứ hai bằng \[\frac{2}{3}\] năng suất của người thứ nhất nên ta có phương trình: O10-2024-GV154 \[\frac{1}{y} = \frac{2}{{3x}}\].          (1)

Do hai người cùng làm chung trong 15 ngày thì xong công việc nên ta có phương trình: O10-2024-GV154

\[\frac{1}{x} + \frac{1}{y} = \frac{1}{{15}}\].    (2)

Từ (1) và (2) ta có hệ phương trình: O10-2024-GV154 \(\left\{ \begin{array}{l}\frac{1}{y} = \frac{2}{{3x}}\\\frac{1}{x} + \frac{1}{y} = \frac{1}{{15}}\end{array} \right.\)

Giải hệ phương trình ta được \[x = 25\] và \[y = 37,5\](tmđk).

Vậy người thứ nhất làm một mình xong công việc trong\[25\] ngày, người thứ hai làm một mình xong công việc trong\[37,5\] ngày.

Đáp án: 37,5.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP