Cho hệ phương trình \(\left\{ \begin{array}{l}x + 2 + \frac{2}{{\sqrt y  - 3}} = 9\\2x + 4 - \frac{1}{{\sqrt y  - 3}} = 8\end{array} \right.\) (I)
a) Điều kiện xác định của hệ phương trình (I) là \(\left\{ \begin{array}{l}y \ne 9\\y \ge 0\end{array} \right.\).
b) Đặt \(\frac{1}{{\sqrt y  - 3}} = a\). Hệ phương trình (I) trở thành: O10-2024-GV154 O10-2024-GV147 \(\left\{ \begin{array}{l}(x + 2) + 2a = 9\\2(x + 2) - a = 8\end{array} \right.\) (II)
c) Giải hệ phương trình (II) ta được \(x = 3\,;\,\,a = 2.\)
d) Hệ phương trình (I) có nghiệm duy nhất \(\left( {x\,;\,\,y} \right) = \left( {3\,;\,\,\frac{7}{2}} \right)\).
                                    
                                                                                                                        Cho hệ phương trình \(\left\{ \begin{array}{l}x + 2 + \frac{2}{{\sqrt y - 3}} = 9\\2x + 4 - \frac{1}{{\sqrt y - 3}} = 8\end{array} \right.\) (I)
a) Điều kiện xác định của hệ phương trình (I) là \(\left\{ \begin{array}{l}y \ne 9\\y \ge 0\end{array} \right.\).
b) Đặt \(\frac{1}{{\sqrt y - 3}} = a\). Hệ phương trình (I) trở thành: O10-2024-GV154 O10-2024-GV147 \(\left\{ \begin{array}{l}(x + 2) + 2a = 9\\2(x + 2) - a = 8\end{array} \right.\) (II)
c) Giải hệ phương trình (II) ta được \(x = 3\,;\,\,a = 2.\)
d) Hệ phương trình (I) có nghiệm duy nhất \(\left( {x\,;\,\,y} \right) = \left( {3\,;\,\,\frac{7}{2}} \right)\).
Câu hỏi trong đề: Bài tập ôn tập Toán 9 Cánh diều Chương 1 có đáp án !!
Quảng cáo
Trả lời:
 Giải bởi Vietjack
                                        Giải bởi Vietjack
                                    a) Đúng. Điều kiện xác định của hệ phương trình (I) là \(\left\{ \begin{array}{l}y \ne 9\\y \ge 0\end{array} \right.\).
b) Đúng. Đặt \(\frac{1}{{\sqrt y - 3}} = a\). Hệ phương trình (I) trở thành:O10-2024-GV154 O10-2024-GV147 \(\left\{ \begin{array}{l}(x + 2) + 2a = 9\\2(x + 2) - a = 8\end{array} \right.\) (II).
c) Đúng. Nhân hai vế của phương trình thứ hai của hệ (II) với 2, ta được \(\left\{ \begin{array}{l}(x + 2) + 2a = 9\\4(x + 2) - 2a = 16\end{array} \right..\)
Cộng vế theo vế hai phương trình của hệ mới, ta được: \(5\left( {x + 2} \right) = 25\), suy ra \(x + 2 = 5\) nên \(x = 3.\)
Thế vào phương trình thứ nhất của hệ mới, ta có: \(\left( {3 + 2} \right) + 2a = 9\) nên \(a = 2.\)
d) Sai. Khi đó \(\frac{1}{{\sqrt y - 3}} = 2\) hay \(\sqrt y - 3 = \frac{1}{2}\) nên \(\sqrt y - 3 = \frac{1}{2}\), suy ra \(y = \frac{{49}}{4}.\)
Vậy hệ phương trình (I) có nghiệm duy nhất \(\left( {x\,;\,\,y} \right) = \left( {3\,;\,\,\frac{{49}}{4}} \right)\).
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Sai. Thay \(x = 2\,;\,\,y = 5\) vào phương trình \(2x + 5y = 7\), ta được \(2 \cdot 2 + 5 \cdot 5 = 29 \ne 7\).
Do đó, cặp số \(\left( {2;5} \right)\) không phải là nghiệm của phương trình.
b) Đúng. Ta có \(2x + 5y = 7\), suy ra \(2x = 7 - 5y\).
c) Đúng. Ta có \(2x + 5y = 7\) suy ra \(y = \frac{{ - 2}}{5}x + \frac{7}{5} = - 0,4x + 1,4\).
Do đó \(a - b = - 0,4 - 1,4 = - 1,8\).
d) Sai. Ta có \(ab = - 0,4 \cdot 1,4 = - 0,56\).
Lời giải
Gọi thời gian làm việc một mình của người thứ nhất và người thứ hai lần lượt là\[x\], \[y\] (ngày)
Điều kiện: O10-2024-GV154 \[x\], \[y > 0\]
Trong một ngày, người thứ nhất làm được\[\frac{1}{x}\] (công việc), người thứ hai làm được \[\frac{1}{y}\] (công việc).
Do năng suất trong một ngày của người thứ hai bằng \[\frac{2}{3}\] năng suất của người thứ nhất nên ta có phương trình: O10-2024-GV154 \[\frac{1}{y} = \frac{2}{{3x}}\]. (1)
Do hai người cùng làm chung trong 15 ngày thì xong công việc nên ta có phương trình: O10-2024-GV154
\[\frac{1}{x} + \frac{1}{y} = \frac{1}{{15}}\]. (2)
Từ (1) và (2) ta có hệ phương trình: O10-2024-GV154 \(\left\{ \begin{array}{l}\frac{1}{y} = \frac{2}{{3x}}\\\frac{1}{x} + \frac{1}{y} = \frac{1}{{15}}\end{array} \right.\)
Giải hệ phương trình ta được \[x = 25\] và \[y = 37,5\](tmđk).
Vậy người thứ nhất làm một mình xong công việc trong\[25\] ngày, người thứ hai làm một mình xong công việc trong\[37,5\] ngày.
Đáp án: 37,5.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
 Nhắn tin Zalo
 Nhắn tin Zalo