Một công nhân dự kiến làm sản phẩm trong một thời gian nhất định. Trước khi thực hiện, xí nghiệp giao thêm cho công nhân đó sản phẩm nữa. Do đó mặc dù mỗi giờ công nhân đó đã làm thêm sản phẩm nhưng vẫn hoàn thành chậm hơn dự kiến giờ phút. Năng suất dự kiến của công nhân đó là bao nhiêu sản phẩm/giờ?
Câu hỏi trong đề: Bài tập ôn tập Toán 9 Cánh diều Chương 1 có đáp án !!
Quảng cáo
Trả lời:

Gọi năng suất dự kiến của người công nhân là \[x\] (sản phẩm/giờ, \[x \in {\mathbb{N}^ * })\].
Năng suất thực tế của người công nhân là \[x + 3\] (sản phẩm/giờ).
Thời gian công nhân làm hết 33 sản phẩm theo dự kiến là \[\frac{{33}}{x}\] (giờ).
Số sản phẩm người công nhân được giao trên thực tế là: \[33 + 29 = 62\] (sản phẩm).
Thời gian người công nhân đó làm trên thực tế là: \[\frac{{62}}{{x + 3}}\] (giờ)
Mặc dù mỗi giờ công nhân đó đã làm thêm 3 sản phẩm những vẫn hoàn thành chậm hơn dự kiến \[1\] giờ \[30\] phút \[ = \frac{3}{2}\] giờ, nên ta có phương trình: \[\frac{{62}}{{x + 3}} - \frac{{33}}{x} = \frac{3}{2}\].
Giải phương trình:
\[\frac{{62 \cdot 2x}}{{2x\left( {x + 3} \right)}} - \frac{{33 \cdot 2\left( {x + 3} \right)}}{{2x\left( {x + 3} \right)}} = \frac{{3x\left( {x + 3} \right)}}{{2x\left( {x + 3} \right)}}\]
\[62 \cdot 2x - 33 \cdot 2\left( {x + 3} \right) = 3x\left( {x + 3} \right)\]
\[124x - 66x - 198 = 3{x^2} + 9x\]
\[3{x^2} - 49x + 198 = 0\]
\[3{x^2} - 27x - 22x + 198 = 0\]
\[3x\left( {x - 9} \right) - 22\left( {x - 9} \right) = 0\]
\[\left( {x - 9} \right)\left( {3x - 22} \right) = 0\]
\[3x - 22 = 0\] hoặc \[x - 9 = 0\]
\[3x = 22\] hoặc \[x = 9\]
\[x = \frac{{22}}{3}\] (không thỏa mãn) hoặc \[x = 9\] (thỏa mãn).
Do đó, năng suất dự kiến của công nhân đó là \[9\] (sản phẩm/giờ).
Đáp án: 9.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi thời gian làm việc một mình của người thứ nhất và người thứ hai lần lượt là\[x\], \[y\] (ngày)
Điều kiện: O10-2024-GV154 \[x\], \[y > 0\]
Trong một ngày, người thứ nhất làm được\[\frac{1}{x}\] (công việc), người thứ hai làm được \[\frac{1}{y}\] (công việc).
Do năng suất trong một ngày của người thứ hai bằng \[\frac{2}{3}\] năng suất của người thứ nhất nên ta có phương trình: O10-2024-GV154 \[\frac{1}{y} = \frac{2}{{3x}}\]. (1)
Do hai người cùng làm chung trong 15 ngày thì xong công việc nên ta có phương trình: O10-2024-GV154
\[\frac{1}{x} + \frac{1}{y} = \frac{1}{{15}}\]. (2)
Từ (1) và (2) ta có hệ phương trình: O10-2024-GV154 \(\left\{ \begin{array}{l}\frac{1}{y} = \frac{2}{{3x}}\\\frac{1}{x} + \frac{1}{y} = \frac{1}{{15}}\end{array} \right.\)
Giải hệ phương trình ta được \[x = 25\] và \[y = 37,5\](tmđk).
Vậy người thứ nhất làm một mình xong công việc trong\[25\] ngày, người thứ hai làm một mình xong công việc trong\[37,5\] ngày.
Đáp án: 37,5.
Lời giải
a) Sai. Thay \(x = 2\,;\,\,y = 5\) vào phương trình \(2x + 5y = 7\), ta được \(2 \cdot 2 + 5 \cdot 5 = 29 \ne 7\).
Do đó, cặp số \(\left( {2;5} \right)\) không phải là nghiệm của phương trình.
b) Đúng. Ta có \(2x + 5y = 7\), suy ra \(2x = 7 - 5y\).
c) Đúng. Ta có \(2x + 5y = 7\) suy ra \(y = \frac{{ - 2}}{5}x + \frac{7}{5} = - 0,4x + 1,4\).
Do đó \(a - b = - 0,4 - 1,4 = - 1,8\).
d) Sai. Ta có \(ab = - 0,4 \cdot 1,4 = - 0,56\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.