Câu hỏi:

08/10/2025 53 Lưu

Một mảnh đất hình chữ nhật có chu vi \[56{\rm{\;m}}{\rm{.}}\] Nếu tăng chiều rộng thêm \[2{\rm{\;m}}\] và giảm chiều dài đi \[{\rm{1\;m}}\] thì diện tích của mảnh đất tăng thêm \[18{\rm{\;}}{{\rm{m}}^2}.\] Tính diện tích mảnh đất đó. (đơn vị: \[{{\rm{m}}^2}).\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \[x{\rm{\;(m)}},\,\,y{\rm{\;(m)}}\]lần lượt là chiều dài, chiều rộng của mảnh đất hình chữ nhật  \[\left( {x > y > 0,\,\,x > 1} \right).\]

Vì chu vi của mảnh đất là \[56{\rm{\;m}}\] nên ta có phương trình \[2\left( {x + y} \right) = 56\] hay \[x + y = 28\].    (1)

Diện tích của mảnh đất ban đầu là \[xy{\rm{\;(}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\]

Chiều dài mảnh đất sau khi tăng là \[x - 1{\rm{\;(m)}}\];

Chiều rộng mảnh đất sau khi giảm là \[y + 2{\rm{\;(m)}}{\rm{.}}\] \[18{\rm{\;}}{{\rm{m}}^2}\]

Khi đó diện tích mảnh đất tăng thêm  nên ta có phương trình

\[\left( {x - 1} \right)\left( {y + 2} \right) = xy + 18\] hay \[xy + 2x - y - 2 = xy + 18\], tức là, \[2x - y = 20\].            (2)

Từ (1), (2), ta có hệ phương trình \[\left\{ \begin{array}{l}x + y = 28\\2x - y = 20\end{array} \right.\]

Từ phương trình thứ hai của hệ, ta có \[y = 2x - 20\]. Thế vào phương trình thứ nhất của hệ, ta được:

\[x + 2x - 20 = 28\] hay \[3x = 48\], tức là, \[x = 16\] (TMĐK).

Từ đó, ta có \[y = 2 \cdot 16 - 20 = 12\] (TMĐK).

Do đó, chiều dài và chiều rộng của mảnh đất đó lần lượt là \[16{\rm{\;m}}\] và \[12{\rm{\;m}}\].

Vậy diện tích mảnh đất đó bằng \[16 \cdot 12 = 192{\rm{\;(}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\]

Đáp án: 192.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Sai. Thay \(x = 2\,;\,\,y = 5\) vào phương trình \(2x + 5y = 7\), ta được \(2 \cdot 2 + 5 \cdot 5 = 29 \ne 7\).

Do đó, cặp số \(\left( {2;5} \right)\) không phải là nghiệm của phương trình.

b) Đúng. Ta có \(2x + 5y = 7\), suy ra \(2x = 7 - 5y\).

c) Đúng. Ta có \(2x + 5y = 7\) suy ra \(y = \frac{{ - 2}}{5}x + \frac{7}{5} =  - 0,4x + 1,4\).

Do đó \(a - b =  - 0,4 - 1,4 =  - 1,8\).

d) Sai. Ta có \(ab =  - 0,4 \cdot 1,4 =  - 0,56\).

Lời giải

Gọi thời gian làm việc một mình của người thứ nhất và người thứ hai lần lượt là\[x\], \[y\] (ngày)

Điều kiện: O10-2024-GV154 \[x\], \[y > 0\]

Trong một ngày, người thứ nhất làm được\[\frac{1}{x}\] (công việc), người thứ hai làm được \[\frac{1}{y}\] (công việc).

Do năng suất trong một ngày của người thứ hai bằng \[\frac{2}{3}\] năng suất của người thứ nhất nên ta có phương trình: O10-2024-GV154 \[\frac{1}{y} = \frac{2}{{3x}}\].          (1)

Do hai người cùng làm chung trong 15 ngày thì xong công việc nên ta có phương trình: O10-2024-GV154

\[\frac{1}{x} + \frac{1}{y} = \frac{1}{{15}}\].    (2)

Từ (1) và (2) ta có hệ phương trình: O10-2024-GV154 \(\left\{ \begin{array}{l}\frac{1}{y} = \frac{2}{{3x}}\\\frac{1}{x} + \frac{1}{y} = \frac{1}{{15}}\end{array} \right.\)

Giải hệ phương trình ta được \[x = 25\] và \[y = 37,5\](tmđk).

Vậy người thứ nhất làm một mình xong công việc trong\[25\] ngày, người thứ hai làm một mình xong công việc trong\[37,5\] ngày.

Đáp án: 37,5.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP