Một mảnh đất hình chữ nhật có chu vi \[56{\rm{\;m}}{\rm{.}}\] Nếu tăng chiều rộng thêm \[2{\rm{\;m}}\] và giảm chiều dài đi \[{\rm{1\;m}}\] thì diện tích của mảnh đất tăng thêm \[18{\rm{\;}}{{\rm{m}}^2}.\] Tính diện tích mảnh đất đó. (đơn vị: \[{{\rm{m}}^2}).\]
                                    
                                                                                                                        Câu hỏi trong đề: Bài tập ôn tập Toán 9 Cánh diều Chương 1 có đáp án !!
Quảng cáo
Trả lời:
 Giải bởi Vietjack
                                        Giải bởi Vietjack
                                    Gọi \[x{\rm{\;(m)}},\,\,y{\rm{\;(m)}}\]lần lượt là chiều dài, chiều rộng của mảnh đất hình chữ nhật \[\left( {x > y > 0,\,\,x > 1} \right).\]
Vì chu vi của mảnh đất là \[56{\rm{\;m}}\] nên ta có phương trình \[2\left( {x + y} \right) = 56\] hay \[x + y = 28\]. (1)
Diện tích của mảnh đất ban đầu là \[xy{\rm{\;(}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\]
Chiều dài mảnh đất sau khi tăng là \[x - 1{\rm{\;(m)}}\];
Chiều rộng mảnh đất sau khi giảm là \[y + 2{\rm{\;(m)}}{\rm{.}}\] \[18{\rm{\;}}{{\rm{m}}^2}\]
Khi đó diện tích mảnh đất tăng thêm nên ta có phương trình
\[\left( {x - 1} \right)\left( {y + 2} \right) = xy + 18\] hay \[xy + 2x - y - 2 = xy + 18\], tức là, \[2x - y = 20\]. (2)
Từ (1), (2), ta có hệ phương trình \[\left\{ \begin{array}{l}x + y = 28\\2x - y = 20\end{array} \right.\]
Từ phương trình thứ hai của hệ, ta có \[y = 2x - 20\]. Thế vào phương trình thứ nhất của hệ, ta được:
\[x + 2x - 20 = 28\] hay \[3x = 48\], tức là, \[x = 16\] (TMĐK).
Từ đó, ta có \[y = 2 \cdot 16 - 20 = 12\] (TMĐK).
Do đó, chiều dài và chiều rộng của mảnh đất đó lần lượt là \[16{\rm{\;m}}\] và \[12{\rm{\;m}}\].
Vậy diện tích mảnh đất đó bằng \[16 \cdot 12 = 192{\rm{\;(}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\]
Đáp án: 192.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Sai. Thay \(x = 2\,;\,\,y = 5\) vào phương trình \(2x + 5y = 7\), ta được \(2 \cdot 2 + 5 \cdot 5 = 29 \ne 7\).
Do đó, cặp số \(\left( {2;5} \right)\) không phải là nghiệm của phương trình.
b) Đúng. Ta có \(2x + 5y = 7\), suy ra \(2x = 7 - 5y\).
c) Đúng. Ta có \(2x + 5y = 7\) suy ra \(y = \frac{{ - 2}}{5}x + \frac{7}{5} = - 0,4x + 1,4\).
Do đó \(a - b = - 0,4 - 1,4 = - 1,8\).
d) Sai. Ta có \(ab = - 0,4 \cdot 1,4 = - 0,56\).
Lời giải
Gọi thời gian làm việc một mình của người thứ nhất và người thứ hai lần lượt là\[x\], \[y\] (ngày)
Điều kiện: O10-2024-GV154 \[x\], \[y > 0\]
Trong một ngày, người thứ nhất làm được\[\frac{1}{x}\] (công việc), người thứ hai làm được \[\frac{1}{y}\] (công việc).
Do năng suất trong một ngày của người thứ hai bằng \[\frac{2}{3}\] năng suất của người thứ nhất nên ta có phương trình: O10-2024-GV154 \[\frac{1}{y} = \frac{2}{{3x}}\]. (1)
Do hai người cùng làm chung trong 15 ngày thì xong công việc nên ta có phương trình: O10-2024-GV154
\[\frac{1}{x} + \frac{1}{y} = \frac{1}{{15}}\]. (2)
Từ (1) và (2) ta có hệ phương trình: O10-2024-GV154 \(\left\{ \begin{array}{l}\frac{1}{y} = \frac{2}{{3x}}\\\frac{1}{x} + \frac{1}{y} = \frac{1}{{15}}\end{array} \right.\)
Giải hệ phương trình ta được \[x = 25\] và \[y = 37,5\](tmđk).
Vậy người thứ nhất làm một mình xong công việc trong\[25\] ngày, người thứ hai làm một mình xong công việc trong\[37,5\] ngày.
Đáp án: 37,5.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
 Nhắn tin Zalo
 Nhắn tin Zalo