Trong kì thi học sinh giỏi cấp trường, lớp \(11{B_1}\) có 15 học sinh giỏi Văn, 22 học sinh giỏi Toán. Tìm số học sinh giỏi cả Văn và Toán biết lớp \(11{B_1}\) có 40 học sinh, và có 14 học sinh không đạt học sinh giỏi.
Câu hỏi trong đề: Đề kiểm tra Bài tập cuối chương l (có lời giải) !!
Quảng cáo
Trả lời:
Chọn C

Số học sinh học giỏi ít nhất một trong hai môn Toán và Văn là: \(40 - 14 = 26\).
Số học sinh chỉ giỏi Toán mà không giỏi Văn (Phần Toán sau khi bỏ đi phần giao)
là: \(26 - 15 = 11\).
Vậy số học sinh giỏi cả hai môn Toán và Văn (Phần giao nhau) là: \(22 - 11 = 11\)
Cách 2:
Số học sinh học giỏi ít nhất một trong hai môn Toán và Văn là: \(40 - 14 = 26\).
Số học sinh giỏi cả hai môn Toán và Văn là: \(22 + 15 - 26 = 11\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn D
Vì \(x \in \mathbb{N},x \le 5\) nên \(x \in \left\{ {0;1;2;3;4;5} \right\} \Rightarrow x + 1 = \left\{ {1;2;3;4;5;6} \right\}\).
Câu 2
Lời giải
Chọn A
Số tập con có 2 phần tử trong đó có phần tử a là 5 tập \(\left\{ {a;b} \right\},\left\{ {a;c} \right\},\left\{ {a;d} \right\},\left\{ {a;e} \right\},\left\{ {a,f} \right\}\).
Số tập con có 2 phần tử mà luôn có phần tử b nhưng không có phần tử a là 4 tập: \(\left\{ {b;c} \right\}\), \(\left\{ {b;d} \right\}\), \(\left\{ {b;e} \right\}\), \(\left\{ {b;f} \right\}\).
Tương tự ta có tất cả \(5 + 4 + 3 + 2 + 1 = 15\) tập.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.