Mỗi học sinh của lớp \(10{A_1}\) đều học giỏi môn Toán hoặc môn Hóa, biết rằng có 30 học sinh giỏi Toán, 35 học sinh giỏi Hóa, và 20 em học giỏi cả hai môn. Hỏi lớp \(10{A_1}\) có bao nhiêu học sinh?
Câu hỏi trong đề: Đề kiểm tra Bài tập cuối chương l (có lời giải) !!
Quảng cáo
Trả lời:

Chọn B
Dựa vào biểu đồ ven ta có:
Số học sinh chỉ giỏi môn Toán là: \(30 - 20 = 10\).
Số học sinh chỉ giỏi môn Hóa là: \(35 - 20 = 15\).
Do đó số học sinh lớp \(10{A_1}\) là: \(10 + 20 + 15 = 45\)
Cách 2: Sĩ số học sinh lớp \(10{A_1}\) là: \(30 + 35 - 20 = 45\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \(A\) là tập hợp các học sinh chơi bóng đá, \(B\) là tập hợp các học sinh chơi bóng bàn,
C là tập hợp các học sinh không chơi môn thể thao nào.
Ta có: \(|A|\): là số học sinh chơi bóng đá; \(|B|\): là số học sinh chơi bóng bàn; \(|C|\): là số học sinh không chơi môn thể thao nào.
Khi đó số học sinh chỉ chơi một môn thể thao là: \(|A| + |B| - 2|A \cap B| = 25 + 23 - 2.14 = 20.{\rm{ }}\)
Lời giải
Gọi \(T,L,H\) lần lượt là tập hợp các học sinh giỏi môn Toán, Lý, Hóa.
Ta có: \(|T \cup L \cup H| = |T| + |L| + |H| - |T \cap L| - |L \cap H| - |H \cap T| + |T \cap L \cap H|\) \( \Leftrightarrow 45 = 25 + 23 + 20 - 11 - 8 - 9 + |T \cap L \cap H|\)
\( \Leftrightarrow |T \cap L \cap H| = 5\).
Vậy có 5 học sinh giỏi cả 3 môn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.