Trong mặt phẳng Oxy, cho tứ giác ABCD có \(A( - 3;0);B(0;2);C(3;1);D(3; - 2)\). Tìm tất cả các giá trị của \(m\) sao cho điểm \(M(m;m - 1)\) nằm trong hình tứ giác ABCD kể cả 4 cạnh.
                                    
                                                                                                                        Trong mặt phẳng Oxy, cho tứ giác ABCD có \(A( - 3;0);B(0;2);C(3;1);D(3; - 2)\). Tìm tất cả các giá trị của \(m\) sao cho điểm \(M(m;m - 1)\) nằm trong hình tứ giác ABCD kể cả 4 cạnh.
Quảng cáo
Trả lời:
 Giải bởi Vietjack
                                        Giải bởi Vietjack
                                    Trong mặt phẳng \(Oxy\), cho tứ giác \(ABCD\) có \(A( - 3;0);B(0;2);C(3;1);D(3; - 2)\). Tìm tất cả các giá trị của \(m\) sao cho điểm \(M(m;m - 1)\) nằm trong hình tứ giác \(ABCD\) kể cả 4 cạnh.

Nhận thấy hình tứ giác \(ABCD\) tính cả 4 cạnh của nó là miền nghiệm của hệ bất phương trình gồm 4 bất phương trình có miền nghiệm là nửa mặt phẳng chứa điểm \(O(0;0)\) và lần lượt có các bờ là các đường thẳng \(AB,BC,CD\) và \(DA\).
Phương trình đường thẳng \(AB\) :
\(\frac{{x + 3}}{{0 - ( - 3)}} = \frac{{y - 0}}{{2 - 0}} \Leftrightarrow 2x - 3y + 6 = 0.{\rm{ }}\)
Bất phương trình có miền nghiệm là là nửa mặt phẳng bờ \(AB\) (tính cả bờ \(AB\)) và chứa điểm \(O\) là \(2x - 3y + 6 \ge 0\).
Phương trình đường thẳng \(BC:\frac{{x - 0}}{{3 - 0}} = \frac{{y - 2}}{{1 - 2}} \Leftrightarrow x + 3y - 6 = 0\). Bất phương trình có miền nghiệm là là nửa mặt phẳng bờ \(BC\) (tính cả bờ \(BC\)) và chứa điểm \(O\) là \(x + 3y - 6 \le 0\).
Phương trình đường thẳng \(CD:x - 3 = 0\). Bất phương trình có miền nghiệm là là nửa mặt phẳng bờ \(CD\) (tính cả bờ \(CD\)) và chứa điểm \(O\) là \(x - 3 \le 0\).
Phương trình đường thẳng \(DA:\frac{{x + 3}}{{3 - ( - 3)}} = \frac{{y - 0}}{{ - 2 - 0}} \Leftrightarrow x + 3y + 3 = 0\). Bất phương trình có miền nghiệm là là nửa mặt phẳng bờ \(DA\) (tính cả bờ \(DA\) ) và chứa điểm \(O\) là \(x + 3y + 3 \ge 0\).
Hình tứ giác \(ABCD\) tính cả 4 cạnh của nó là miền nghiệm của hệ bất phương trình \(\left\{ {\begin{array}{*{20}{l}}{2x - 3y + 6 \ge 0}\\{x + 3y - 6 \le 0}\\{x - 3 \le 0}\\{x + 3y + 3 \ge 0}\end{array}} \right.(1)\)
Điểm \(M(m;m - 1)\) nằm trong hình tứ giác \(ABCD\) tính cả 4 cạnh của nó khi và chỉ khi \((m;m - 1)\) là một nghiệm của hệ \((1)\), tức là
\(\left\{ {\begin{array}{*{20}{l}}{2m - 3(m - 1) + 6 \ge 0}\\{m + 3(m - 1) - 6 \le 0}\\{m - 3 \le 0}\\{m + 3(m - 1) + 3 \ge 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{m \le 9}\\{m \le \frac{9}{4}}\\{m \le 3}\\{m \ge 0}\end{array} \Leftrightarrow 0 \le m \le \frac{9}{4}} \right.} \right.\)
Vậy các giá trị của \(m\) thỏa mãn là \(0 \le m \le \frac{9}{4}\).
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \(x,y(xe)\) lần lượt là số xe loại \(A\) và \(B\) cần thuê.
Khi đó, số tiền cần bỏ ra để thuê xe là \(F(x;y) = 5x + 4y\) (triệu đồng)
Ta có \(x\) xe loại \(A\) chở được \(30x\) người và \(0,8x\) tấn hàng; \(y\) xe loại \(B\) chở được \(20y\) người và \(1,6y\) tấn hàng.
Suy ra \(x\) xe loại \(A\) và \(y\) xe loại \(B\) chở được \(30x + 20y\) người và \(0,8x + 1,6y\) tấn hàng.
Ta có hệ bất phương trình sau: \(\left\{ {\begin{array}{*{20}{l}}{30x + 20y \ge 180}\\{0,8x + 1,6y \ge 8}\\{0 \le x \le 10}\\{0 \le y \le 9}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{3x + 2y \ge 18}\\{x + 2y \ge 10}\\{0 \le x \le 10}\\{0 \le y \le 9}\end{array}} \right.} \right.\) (*)
Bài toán trở thành tìm giá trị nhỏ nhất của \(F(x;y)\) trên miền nghiệm của hệ (*).
Miền nghiệm của hệ \((*)\) là tứ giác \(ABCD\) (kể cả bờ)

Tìm tọa độ các điểm \(A,B,C,D\).
Tọa độ điểm \(A\) là nghiệm của hệ \(\left\{ {\begin{array}{*{20}{l}}{3x + 2y - 18 = 0}\\{y = 9}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = 0}\\{y = 9}\end{array}} \right.} \right.\). Vậy \(A(0;9)\).
Tọa độ điểm \(B\) là nghiệm của hệ \(\left\{ {\begin{array}{*{20}{l}}{3x + 2y - 18 = 0}\\{x + 2y - 10 = 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = 4}\\{y = 3}\end{array}} \right.} \right.\). Vậy \(B(4;3)\).
Tọa độ điểm \(C\) là nghiệm của hệ \(\left\{ {\begin{array}{*{20}{l}}{x = 10}\\{x + 2y - 10 = 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = 10}\\{y = 0}\end{array}} \right.} \right.\). Vậy \(C(10;0)\).
Tọa độ điểm \(D\) là nghiệm của hệ \(\left\{ {\begin{array}{*{20}{l}}{x = 10}\\{y = 9}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = 10}\\{y = 9}\end{array}} \right.} \right.\). Vậy \(D(10;9)\).
Ta thấy \(F(x;y) = 5x + 4y\) đạt giá trị nhỏ nhất chỉ có thể tại các điểm \(A,B,C,D\).
Tại \(A(0;9)\) thì \(F = 36\) (triệu đồng).
Tại \(B(4;3)\) thì \(F = 32\) (triệu đồng).
Tại \(C(10;0)\) thì \(F = 50\) (triệu đồng).
Tại \(D(10;9)\) thì \(F = 86\) (triệu đồng).
Như vậy để chi phí thấp nhất cần thuê 4 xe loại \(A\) và 3 xe loại \(B\).
Lời giải
| a) Đúng | b) Sai | c) Đúng | d) Sai | 
Bất phương trình biểu thị mối liên hệ giữa \(x\) và \(y\) là: \(1,5x + 1,2y \le 10\).
Miền nghiệm của bất phương trình \(1,5x + 1,2y \le 10\) là nửa mặt phẳng bờ
là đường thẳng \(d:1,5x + 1,2y = 10\) chứa điểm \(O(0;0)\), được biểu diễn là miền không bị gạch chéo, tính cả bờ \(d:1,5x + 1,2y = 10\).

Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

 
  
 
 Nhắn tin Zalo
 Nhắn tin Zalo