Câu hỏi:

09/10/2025 894 Lưu

Bác Năm dự định trồng ngô và đậu xanh trên một mảnh đất có diện tích 8 hecta (ha). Nếu trồng 1 ha ngô thì cần 20 ngày công và thu được 40 triệu đồng. Nếu trồng 1 ha đậu xanh thì cần 30 ngày công và thu được 50 triệu đồng. Bác Năm cần trồng bao nhiêu ha cho mỗi loại cây để thu được nhiều tiền nhất? Biết rằng, bác Năm chỉ có thể sử dụng không quá 180 ngày công cho việc trồng ngô và đậu xanh.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \(x\) là số hecta (ha) đất trồng ngô và y là số hecta đất trồng đậu xanh.

Ta có các điều kiện ràng buộc đối với \(x,y\) như sau: Hiển nhiên \(x \ge 0,y \ge 0\).

- Diện tích canh tác không vượt quá 8 ha nên \(x + y \le 8\).

- Số ngày công sử dụng không vượt quá 180 nên \(20x + 30y \le 180\).

Từ đó, ta có hệ bất phương trình mô tả các điều kiện ràng buộc: \(\left\{ \begin{array}{l}x + y \le 8\\20x + 30y \le 180\\x \ge 0\\y \ge 0\end{array} \right.\)

Biểu diễn miền nghiệm của hệ bất phương trình này trên hệ trục toạ độ Oxy, ta được miền tứ giác \(OABC\) (Hình). Toạ độ các đỉnh của tứ giác đó là: \(O(0;0);A(0;6);B(6;2);C(8;0)\)

Bác Năm dự định trồng ngô và đậu xanh trên một mảnh đất có diện tích 8 hecta (ha). Nếu trồng 1 ha ngô thì cần 20 ngày công và thu được 40 triệu đồng. (ảnh 1)

Gọi F là số tiền (đơn vị: triệu đồng) bác Năm thu được, ta có: \(F = 40x + 50y\).

Ta phải tìm \(x,y\) thoả mãn hệ bất phương trình sao cho \(F\) đạt giá trị lớn nhất, nghĩa là tìm giá trị lớn nhất của biểu thức \(F = 40x + 50y\) trên miền tứ giác \(OABC\).

Tính các giá trị của biểu thức \(F\) tại các đỉnh của đa giác, ta có:

Tại \(O(0;0):F = 40.0 + 50.0 = 0;\quad \)        Tại \(A(0;6):F = 40.0 + 50.6 = 300\);

Tại \(B(6;2):F = 40.6 + 50.2 = 340\); \(\quad \) Tại \(C(8;0):F = 40.8 + 50.0 = 320\).

\(F\) đạt giá trị lớn nhất bằng 340 tại \(B(6;2)\).

Vậy để thu được nhiều tiền nhất, bác Năm cần trồng 6 ha ngô và 2 ha đậu xanh.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi x là số kilôgam sản phẩm \(P\), y là số kilôgam sản phẩm \(Q\) cân sản xuất. Ta có hệ bất phương trình: \(2x + 2y \le 10;2y \le 4;2x + 4y \le 12;x \ge 0;y \ge 0\).

Biểu diễn miền nghiệm của hệ bất phương trình trên hệ trục toạ độ Oxy, ta được như hình trên.

Một người dùng ba loại nguyên liệu \(A,B,C\) để sản xuất ra hai loại sản phẩm \(P\) và \(Q\). Để sản xuất \(1\;kg\) mỗi loại sản phẩm \(P\) hoặc \(Q\) phải dùng một số kilôgam nguyên liệu khác nhau. (ảnh 1)

Miền nghiệm là miền ngũ giác \(OCBAD\), các đỉnh: \(O(0;0);C(0;2);B(2;2);A(4;1)\); \(D(5;0)\)

Gọi F là số tiên lãi (đơn vị: triệu đồng) thu được, ta có: \(F = 3x + 5y\).

Tính giá trị của \(F\) tại các đỉnh của ngũ giác:

Tại \(O(0;0):F = 3.0 + 5.0 = 0;\quad \) Tại \(C(0;2):F = 3.0 + 5.2 = 10\);

Tại \(B(2;2):F = 3.2 + 5.2 = 16;\quad \) Tại \(A(4,1):F = 3.4 + 5.1 = 17\);

Tại \(D(5;0):F = 3.5 + 5.0 = 15\). \(\quad F\) đạt giá trị lớn nhất bằng 17 tại \(A(4;1)\).

Vậy cân sản xuất \(4\;kg\) sản phẩm \(P\) và 1 kg sản phẩm \(Q\) để có lãi cao nhất là 17 triệu đồng.

Lời giải

Gọi x, y lần lượt là số giờ nên cho phân xưởng \(A\)\(B\). Ta có bài toán \(F = 600000x + 1000000y \to \min F\) thỏa 250x+250y5000 (1) 100x+200y3000 (2) x0,y03

Miền ràng buộc \(D\) của bài toán được biểu diễn bằng cách vẽ đồ thị bất phương trình (1) và \((2)\) và (3) tạo thành miền kín rồi lấy các điểm giao nhau làm tọa độ điểm đỉnh. Đỉnh nào làm cho \(F\) nhỏ nhất thì thỏa yêu cầu bài toán.

Một công ty X có 2 phân xưởng A,B cùng sản xuất 2 loại sản phẩm M,N. Số đơn vị sản phẩm các loại được sản xuất ra và chi phí mỗi giờ hoạt động của \(A,B\) như sau: (ảnh 1)

Qua vẽ hình ta tình được phương án tối ưu là \(x = 10,y = 10\)

Vậy để thõa mãn yêu cầu đặt hằng với chi phí thấp nhất công ty cần cho phân xưởng \(A\)\(B\) hoạt động 10 giờ. Chí phí thấp nhất là 16000000 đồng.

Câu 4

A. \[\left( { - 2;1} \right)\].                            
B. \[\left( {2;3} \right)\].             
C. \[\left( {2; - 1} \right)\].                         
D. \[\left( {0;0} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(A\left( {1\,\,;\,\,1} \right).\)                   
B. \(B\left( {1\,\,;\,\,5} \right).\)   
C. \(C\left( {4\,\,;\,\,3} \right).\)                         
D. \(D\left( {0\,\,;\,\,4} \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP