Câu hỏi:

09/10/2025 39 Lưu

A. Trắc nghiệm

Dạng 1. Trắc nghiệm nhiều phương án lựa chọn

Mỗi câu hỏi thí sinh chỉ chọn một phương án.

Cô Hà thống kê lại đường kính thân gỗ của một số cây xoan đào 6 năm tuổi được trồng ở một lâm trường ở bảng sau.

index_html_ae3ea9a1f4b6b9b.png

Hãy tìm khoảng biến thiên của mẫu số liệu ghép nhóm trên.

A. 25.

30.

6.

69,8.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng: A

Khoảng biến thiên của mẫu số liệu ghép nhóm trên là \(65 - 40 = 25\,\,{\rm{(cm)}}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng: B

Bảng tần số ghép nhóm theo giá trị đại diện là:

index_html_85dbe11c9053c12a.png

Số trung bình: \(\bar x = \frac{{2.6 + 7.8 + 7.10 + 3.12 + 1.14}}{{20}} = 9,4\).

Lời giải

a) Đúng. Xét số liệu ở Hà Nội:

Khoảng biến thiên: \(R = 31,8 - 16,8 = 15\).

Số phần tử của mẫu là \(n = 12\).

Tần số tích lũy của các nhóm lần lượt là \(c{f_1} = 2,c{f_2} = 5,c{f_3} = 7,c{f_4} = 8,c{f_5} = 12\).

Ta có: \(\frac{n}{4} = \frac{{12}}{4} = 3\) mà \(2 < 3 < 5\) suy ra nhóm 2 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 3.

Xét nhóm 2 là nhóm \(\left[ {19,8;22,8} \right)\) có \(s = 19,8,h = 3,{n_2} = 3\) và nhóm 1 là nhóm \(\left[ {16,8;19,8} \right)\) có \(c{f_1} = 2\). Ta có tứ phân vị thứ nhất là: \({Q_1} = s + \left( {\frac{{3 - c{f_1}}}{{{n_2}}}} \right).h = 19,8 + \left( {\frac{{3 - 2}}{3}} \right).3 = 20,8\).

Ta có: \(\frac{{3n}}{4} = \frac{{3.12}}{4} = 9\) mà \(8 < 9 < 12\) suy ra nhóm 5 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 9.

Xét nhóm 5 là nhóm \(\left[ {28,8;31,8} \right)\) có \(t = 28,8,1 = 3,{n_5} = 4\) và nhóm 4 là nhóm \(\left[ {25,8;28,8} \right)\) có \(c{f_4} = 8\).

Ta có tứ phân vị thứ ba là: \({Q_3} = t + \left( {\frac{{9 - c{f_4}}}{{{n_5}}}} \right).l = 28,8 + \left( {\frac{{9 - 8}}{4}} \right).3 = 29,55\).

Khoảng tứ phân vị của mẫu số liệu ghép nhóm trên là: \({Q_3} - {Q_1} = 29,55 - 20,8 = 8,75\) .

b) Sai. Số trung bình cộng của mẫu số liệu ghép nhóm là:

\(\overline {{x_1}} = \frac{{2.18,3 + 3.21,3 + 2.24,3 + 27,3 + 4.30,3}}{{12}} = 24,8\).

Phương sai của mẫu số liệu ghép nhóm là:

\(\begin{array}{l}{s_1}^2 = \frac{1}{{12}}\left[ {2{{\left( {18,3 - 24,8} \right)}^2} + 3{{\left( {21,3 - 24,8} \right)}^2} + 2{{\left( {24,3 - 24,8} \right)}^2}} \right.\\\left. {\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + {{\left( {27,3 - 24,8} \right)}^2} + 4{{\left( {30,3 - 24,8} \right)}^2}} \right] = 20,75.\end{array}\)

Độ lệch chuẩn của mẫu số liệu ghép nhóm là: \({s_1} = \sqrt {{s_1}^2} = \sqrt {20,75} \approx 4,56\).

c) Sai. Xét số liệu ở Huế:

Khoảng biến thiên: \(R = 31,8 - 16,8 = 15\).

Số phần tử của mẫu là \(n = 12\).

Tần số tích lũy của các nhóm lần lượt là \(c{f_1} = 1,c{f_2} = 3,c{f_3} = 6,c{f_4} = 8,c{f_5} = 12\).

Ta có: \(\frac{n}{4} = \frac{{12}}{4} = 3\) suy ra nhóm 2 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 3. Xét nhóm 2 là nhóm \([19,8;22,8)\) có \(s = 19,8,\;h = 3,{n_2} = 2\) và nhóm 1 là nhóm \([16,8;19,8)\) có \(c{f_1} = 1\)

Ta có tứ phân vị thứ nhất là: \({Q_1} = s + \left( {\frac{{3 - c{f_1}}}{{{n_2}}}} \right).h = 19,8 + \left( {\frac{{3 - 1}}{2}} \right).3 = 22,8\).

Ta có: \(\frac{{3n}}{4} = \frac{{3.12}}{4} = 9\) mà \(8 < 9 < 12\) suy ra nhóm 5 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 9.

Xét nhóm 5 là nhóm \(\left[ {28,8;31,8} \right)\) có \(t = 28,8,l = 3,{n_5} = 4\) và nhóm 4 là nhóm \([25,8;28,8)\) có \(c{f_4} = 8\).

Ta có tứ phân vị thứ ba là: \({Q_3} = t + \left( {\frac{{9 - c{f_4}}}{{{n_5}}}} \right).l = 28,8 + \left( {\frac{{9 - 8}}{4}} \right).3 = 29,55\).

Khoảng tứ phân vị của mẫu số liệu ghép nhóm trên là: \({Q_3} - {Q_1} = 29,55 - 22,8 = 6,75\).

Số trung bình cộng của mẫu số liệu ghép nhóm là:

\(\overline {{x_2}} = \frac{{18,3 + 2.21,3 + 3.24,3 + 2.27,3 + 4.30,3}}{{12}} = 25,8\).

Phương sai của mẫu số liệu ghép nhóm là:

\[\begin{array}{l}s_2^2 = \frac{1}{{12}}\left[ {{{\left( {18,3 - 25,8} \right)}^2} + 3{{\left( {21,3 - 25,8} \right)}^2} + 3{{\left( {24,3 - 25,8} \right)}^2}} \right.\\\left. {\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + 2{{\left( {27,3 - 25,8} \right)}^2} + 4{{\left( {30,3 - 25,8} \right)}^2}} \right] = 15,75.\end{array}\]

d) Đúng. Độ lệch chuẩn của mẫu số liệu ghép nhóm là: \({s_2} = \sqrt {s_2^2} = \sqrt {15,75} \approx 3,97\).

Huế có nhiệt độ không khí trung bình tháng đồng đều hơn vì độ lệch chuẩn nhỏ hơn.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP