Biểu đồ dưới đây biểu diễn số lượng khách hàng đặt bàn qua hình thức trực tuyến mỗi ngày trong quý II năm 2025 của một nhà hàng. Cột thứ nhất biểu diễn số ngày có từ 1 đến 6 lượt đặt bàn, cột thứ hai biểu diễn số ngày có từ 6 đến 11 lượt đặt bàn; …

Khoảng tứ phân vị của mẫu số liệu ghép nhóm cho bởi biểu đồ trên là:
9,5.
8,5.
10,5.
7,5.
Câu hỏi trong đề: Bài tập ôn tập Toán 12 Cánh diều Chương 3 có đáp án !!
Quảng cáo
Trả lời:
Đáp án đúng: B
Dựa vào biểu đồ ta lập được bảng ghép nhóm như sau:

Cỡ mẫu \(n = 92\) và gọi \({x_1},\,{x_2},...,{x_{92}}\) là mẫu số liệu đã cho.
Ta có: \({x_1},\,....,\,{x_{14}} \in \left[ {1\,;\,6} \right)\);\({x_{45}},\,...,\,{x_{69}} \in \left[ {11\,;\,16} \right)\);
\({x_{70}},\,....,\,{x_{87}} \in \left[ {16\,;\,21} \right)\); \({x_{88}},\,...\,,{x_{92}} \in \left[ {21\,;\,26} \right)\).
Tứ phân vị thứ nhất của mẫu số liệu là \(\frac{{{x_{23}} + {x_{24}}}}{2} \in \left[ {6\,;\,11} \right)\). Do đó tứ phân vị thứ nhất của mẫu số liệu là \({Q_1} = 6 + \frac{{\frac{{92}}{4} - 14}}{{30}}\left( {11 - 6} \right) = 7,5\).
Tứ phân vị thứ ba của mẫu số liệu là \(\frac{{{x_{69}} + {x_{70}}}}{2} \in \left[ {11\,;\,16} \right)\) và \({x_{70}} \in \left[ {16\,;\,21} \right)\). Do đó tứ phân vị thứ ba của mẫu số liệu là \({Q_3} = 16\).
Vậy khoảng tứ phân vị của mẫu số liệu là: \({\Delta _Q} = {Q_3} - {Q_1} = 16 - 7,5 = 8,5\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
\[[7;9)\].
\([9;11)\).
\([11;13)\).
\([13;15)\).
Lời giải
Đáp án đúng: B
Bảng tần số ghép nhóm theo giá trị đại diện là:

Số trung bình: \(\bar x = \frac{{2.6 + 7.8 + 7.10 + 3.12 + 1.14}}{{20}} = 9,4\).
Câu 2
\([0;20)\).
\([20;40)\).
\([40;60)\).
[60; 80).
Lời giải
Đáp án đúng: B
Ta có cỡ mẫu là \[n = 5 + 9 + 12 + 10 + 6 = 42\].
Gọi \({x_1},{x_2}, \ldots ,{x_{42}}\) là thời gian tập thể dục trong ngày của 42 học sinh khối 12 và giả sử dãy này đã sắp xếp theo thứ tự tăng dần.
Khi đó tứ phân vị thứ nhất \({Q_1}\) là trung vị của dãy gồm 21 số liệu đầu nên \({Q_1} = {x_{11}}\). Do \({x_{11}}\) thuộc nhóm \[\left[ {20;40} \right)\]nên nhóm này chứa \[{Q_1}\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.






