Câu hỏi:

09/10/2025 127 Lưu

Biểu đồ dưới đây biểu diễn số lượng khách hàng đặt bàn qua hình thức trực tuyến mỗi ngày trong quý II năm 2025 của một nhà hàng. Cột thứ nhất biểu diễn số ngày có từ 1 đến 6 lượt đặt bàn, cột thứ hai biểu diễn số ngày có từ 6 đến 11 lượt đặt bàn; …

index_html_bfd98c83553f7d0b.png

Khoảng tứ phân vị của mẫu số liệu ghép nhóm cho bởi biểu đồ trên là:

A.

9,5.

B.

8,5.

C.

10,5.

D.

7,5.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng: B

Dựa vào biểu đồ ta lập được bảng ghép nhóm như sau:

index_html_1a4642580cc8d6f6.png

Cỡ mẫu \(n = 92\) và gọi \({x_1},\,{x_2},...,{x_{92}}\) là mẫu số liệu đã cho.

Ta có: \({x_1},\,....,\,{x_{14}} \in \left[ {1\,;\,6} \right)\);\({x_{45}},\,...,\,{x_{69}} \in \left[ {11\,;\,16} \right)\);

\({x_{70}},\,....,\,{x_{87}} \in \left[ {16\,;\,21} \right)\); \({x_{88}},\,...\,,{x_{92}} \in \left[ {21\,;\,26} \right)\).

Tứ phân vị thứ nhất của mẫu số liệu là \(\frac{{{x_{23}} + {x_{24}}}}{2} \in \left[ {6\,;\,11} \right)\). Do đó tứ phân vị thứ nhất của mẫu số liệu là \({Q_1} = 6 + \frac{{\frac{{92}}{4} - 14}}{{30}}\left( {11 - 6} \right) = 7,5\).

Tứ phân vị thứ ba của mẫu số liệu là \(\frac{{{x_{69}} + {x_{70}}}}{2} \in \left[ {11\,;\,16} \right)\) và \({x_{70}} \in \left[ {16\,;\,21} \right)\). Do đó tứ phân vị thứ ba của mẫu số liệu là \({Q_3} = 16\).

Vậy khoảng tứ phân vị của mẫu số liệu là: \({\Delta _Q} = {Q_3} - {Q_1} = 16 - 7,5 = 8,5\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng: B

Bảng tần số ghép nhóm theo giá trị đại diện là:

index_html_85dbe11c9053c12a.png

Số trung bình: \(\bar x = \frac{{2.6 + 7.8 + 7.10 + 3.12 + 1.14}}{{20}} = 9,4\).

Lời giải

Đáp án đúng: C

Số phần tử của mẫu là \(n = 60\).

Tần số tích lũy của các nhóm lần lượt là \(c{f_1} = 3,c{f_2} = 9,c{f_3} = 28,c{f_4} = 51,c{f_5} = 60\).

Ta có: \(\frac{n}{4} = \frac{{60}}{4} = 15\) mà \(9 < 15 < 28\) suy ra nhóm 3 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 15. Xét nhóm 3 là nhóm \(\left[ {60\,;\,70} \right)\) có \(s = 60,\;h = 10,{n_3} = 19\) và nhóm 2 là nhóm \(\left[ {50\,;\,60} \right)\) có \(c{f_2} = 9\).

Ta có tứ phân vị thứ nhất là: \({Q_1} = s + \left( {\frac{{15 - c{f_2}}}{{{n_3}}}} \right) \cdot h = 60 + \left( {\frac{{15 - 9}}{{19}}} \right) \cdot 10 = \frac{{1200}}{{19}}\).

Ta có: \(\frac{{3n}}{4} = \frac{{3.60}}{4} = 45\) mà \(28 < 45 < 51\) suy ra nhóm 4 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bẳng 45. Xét nhóm 4 là nhóm \(\left[ {70\,;\,80} \right)\) có \(t = 70,l = 10,{n_4} = 23\) và nhóm 3 là nhóm \(\left[ {60\,;\,70} \right)\) có \(c{f_3} = 28\).

Ta có tứ phân vị thứ ba là: \({Q_3} = t + \left( {\frac{{45 - c{f_3}}}{{{n_4}}}} \right).l = 70 + \left( {\frac{{45 - 28}}{{23}}} \right).10 = \frac{{1780}}{{23}}\).

Khoảng tứ phân vị của mẫu số liệu ghép nhóm trên là: \({Q_3} - {Q_1} = \frac{{1780}}{{23}} - \frac{{1200}}{{19}} \approx 14,23\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP