Một siêu thị thống kê số tiền (đơn vị: chục nghìn đồng) mà 44 khách hàng mua hàng ở siêu thị đó trong một ngày. Số liệu được ghi lại trong bảng dưới đây.

Độ lệch chuẩn của mẫu số liệu ghép nhóm trên (làm tròn kết quả đến hàng đơn vị) là:
6,8.
7,3.
3,3.
46,1.
Câu hỏi trong đề: Bài tập ôn tập Toán 12 Cánh diều Chương 3 có đáp án !!
Quảng cáo
Trả lời:
Đáp án đúng: A
Số trung bình cộng của mẫu số liệu ghép nhóm là:
\(\bar x = \frac{{4.42,5 + 14.47,5 + 8.52,5 + 10.57,5 + 6.62,5 + 2.67,5}}{{44}} = \frac{{585}}{{11}}\).
Phương sai của mẫu số liệu ghép nhóm là:
\[\begin{array}{l}{s^2} = \frac{1}{{44}}\left[ {4{{\left( {42,5 - \frac{{585}}{{11}}} \right)}^2} + 14{{\left( {47,5 - \frac{{585}}{{11}}} \right)}^2} + 8{{\left( {52,5 - \frac{{585}}{{11}}} \right)}^2} + 10{{\left( {57,5 - \frac{{585}}{{11}}} \right)}^2}} \right.\\\left. {\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + 6{{\left( {62,5 - \frac{{585}}{{11}}} \right)}^2} + 2.{{\left( {67,5 - \frac{{585}}{{11}}} \right)}^2}} \right] \approx 46,12.\end{array}\]
Độ lệch chuẩn của mẫu số liệu ghép nhóm là: \(s = \sqrt {{s^2}} = \sqrt {46,12} \approx 6,8\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
\[[7;9)\].
\([9;11)\).
\([11;13)\).
\([13;15)\).
Lời giải
Đáp án đúng: B
Bảng tần số ghép nhóm theo giá trị đại diện là:

Số trung bình: \(\bar x = \frac{{2.6 + 7.8 + 7.10 + 3.12 + 1.14}}{{20}} = 9,4\).
Lời giải
Đáp án đúng: C
Số phần tử của mẫu là \(n = 60\).
Tần số tích lũy của các nhóm lần lượt là \(c{f_1} = 3,c{f_2} = 9,c{f_3} = 28,c{f_4} = 51,c{f_5} = 60\).
Ta có: \(\frac{n}{4} = \frac{{60}}{4} = 15\) mà \(9 < 15 < 28\) suy ra nhóm 3 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 15. Xét nhóm 3 là nhóm \(\left[ {60\,;\,70} \right)\) có \(s = 60,\;h = 10,{n_3} = 19\) và nhóm 2 là nhóm \(\left[ {50\,;\,60} \right)\) có \(c{f_2} = 9\).
Ta có tứ phân vị thứ nhất là: \({Q_1} = s + \left( {\frac{{15 - c{f_2}}}{{{n_3}}}} \right) \cdot h = 60 + \left( {\frac{{15 - 9}}{{19}}} \right) \cdot 10 = \frac{{1200}}{{19}}\).
Ta có: \(\frac{{3n}}{4} = \frac{{3.60}}{4} = 45\) mà \(28 < 45 < 51\) suy ra nhóm 4 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bẳng 45. Xét nhóm 4 là nhóm \(\left[ {70\,;\,80} \right)\) có \(t = 70,l = 10,{n_4} = 23\) và nhóm 3 là nhóm \(\left[ {60\,;\,70} \right)\) có \(c{f_3} = 28\).
Ta có tứ phân vị thứ ba là: \({Q_3} = t + \left( {\frac{{45 - c{f_3}}}{{{n_4}}}} \right).l = 70 + \left( {\frac{{45 - 28}}{{23}}} \right).10 = \frac{{1780}}{{23}}\).
Khoảng tứ phân vị của mẫu số liệu ghép nhóm trên là: \({Q_3} - {Q_1} = \frac{{1780}}{{23}} - \frac{{1200}}{{19}} \approx 14,23\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
\([0;20)\).
\([20;40)\).
\([40;60)\).
[60; 80).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.






