Câu hỏi:

09/10/2025 186 Lưu

Giả sử kết quả khảo sát hai khu vực \(A\) và \(B\) về độ tuổi kết hôn của một số phụ nữ vừa lập gia đình được cho ở bảng sau:

index_html_e1e99d581f96de08.png

(a) Khoảng biến thiên của mẫu số liệu ghép nhóm ứng với khu vực A là: \(15\) (tuổi).

(b) Khoảng biến thiên của mẫu số liệu ghép nhóm ứng với khu vực B là: \(12\)(tuổi).

(c) Khoảng tứ phân vị của mẫu số liệu ghép nhóm ứng với khu vực A là: \(\frac{{61}}{3}\) (tuổi).

(d) Nếu so sánh theo khoảng tứ phân vị thì phụ nữ ở khu vực B có độ tuổi kết hôn đồng đều hơn.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng. Khoảng biến thiên của mẫu số liệu ghép nhóm ứng với khu vực A là: \(34 - 19 = 15\) (tuổi).

b) Đúng. Khoảng biến thiên của mẫu số liệu ghép nhóm ứng với khu vực B là: \(31 - 19 = 12\)(tuổi).

c) Sai. Cỡ mẫu \(n = 100\).

Gọi \({x_1};{x_2}; \ldots ;{x_{100}}\) là mẫu số liệu gốc về độ tuổi kết hôn của phụ nữ ở khu vực A được xếp theo thứ tự không giảm.

Ta có: \({x_1};{x_2}; \ldots ;{x_{10}} \in [19;22);{x_{11}}; \ldots ;{x_{37}} \in [22;25);{x_{38}}; \ldots ;{x_{68}} \in [25;28);{x_{69}}; \ldots ;{x_{93}} \in [28;31)\);

\({x_{94}}; \ldots ;{x_{100}} \in [31;34)\).

Tứ phân vị thứ nhất của mẫu số liệu gốc là \(\frac{1}{2}\left( {{x_{25}} + {x_{26}}} \right) \in [22;25)\). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: \({Q_1} = 22 + \frac{{\frac{{100}}{4} - 10}}{{27}}(25 - 22) = \frac{{71}}{3}\).

Tứ phân vị thứ ba của mẫu số liệu gốc là \(\frac{1}{2}\left( {{x_{75}} + {x_{76}}} \right) \in [28;31)\). Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: \({Q_3} = 28 + \frac{{\frac{{3.100}}{4} - (10 + 27 + 31)}}{{25}}(31 - 28) = \frac{{721}}{{25}}\).

Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \({\Delta _Q} = {Q_3} - {Q_1} = \frac{{388}}{{75}}\).

Gọi \({y_1};{y_2}; \ldots ;{y_{100}}\) là mẫu số liệu gốc về độ tuổi kết hôn của phụ nữ ở khu vực B được xếp theo thứ tự không giảm.

Ta có: \({y_1};{y_2}; \ldots ;{y_{47}} \in [19;22);{y_{48}}; \ldots ;{y_{87}} \in [22;25);{y_{88}}; \ldots ;{y_{98}} \in [25;30);{y_{99}};{y_{100}} \in [28;31)\).

Tứ phân vị thứ nhất của mẫu số liệu gốc là \(\frac{1}{2}\left( {{y_{25}} + {y_{26}}} \right) \in [19;22)\). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: \({Q_1}^\prime = 19 + \frac{{\frac{{100}}{4}}}{{47}}(22 - 19) = \frac{{968}}{{47}}\).

Tứ phân vị thứ ba của mẫu số liệu gốc là \(\frac{1}{2}\left( {{y_{75}} + {y_{76}}} \right) \in [22;25)\). Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: \({Q_3}^\prime = 22 + \frac{{\frac{{3.100}}{4} - 47}}{{40}}(25 - 22) = \frac{{241}}{{10}}\).

d) Đúng. Có \({\Delta _Q}^\prime < {\Delta _Q}\) nên phụ nữ ở khu vực B có độ tuổi kết hôn đồng đều hơn.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng: B

Bảng tần số ghép nhóm theo giá trị đại diện là:

index_html_85dbe11c9053c12a.png

Số trung bình: \(\bar x = \frac{{2.6 + 7.8 + 7.10 + 3.12 + 1.14}}{{20}} = 9,4\).

Lời giải

a) Đúng. Khoảng biến thiên của chiều cao các cây được chăm sóc theo mỗi phương pháp \(A\) và \(B\) bằng nhau và cùng bằng 50.

b) Đúng. Ước tính số trung bình và độ lệch chuẩn của chiều cao các cây được chăm sóc theo mỗi phương pháp. Cỡ mẫu của hai mẫu số liệu thống kê là \(N = 40\). Ta có bảng tần số ghép nhóm về chiều cao của cây được chăm sóc theo phương pháp \(A\) như sau:

index_html_213b782ecb8b1184.png

Chiều cao trung bình của các cây được chăm sóc theo phương án \(A\) là:

\(\overline {{x_A}} = \frac{{5.6 + 18.5 + 25.12 + 35.8 + 45.6}}{{40}} = 25\)

Ta có bảng tần số ghép nhóm về chiều cao của cây được chăm sóc theo phương pháp \(B\) như sau:

index_html_d7a82c8a12665147.png

Chiều cao trung bình của các cây được chăm sóc theo phương án \(B\) là:

\(\overline {{x_B}} = \frac{{5.13 + 15.6 + 25.2 + 35.6 + 45.13}}{{40}} = 25\)cm.

c) Đúng. Độ lệch chuẩn của chiều cao các cây được chăm sóc theo phương án \(A\)là:

\({s_A} = \sqrt {\frac{{{5^2}.6 + {{15}^2}.8 + {{25}^2}.12 + {{35}^2}.8 + {{45}^2}.6}}{{40}} - {{25}^2}} \approx 12,65\).

d) Sai. Độ lệch chuẩn của chiều cao các cây được chăm sóc theo phương án \(B\)là:

\({s_B} = \sqrt {\frac{{{5^2}.13 + {{15}^2}.6 + {{25}^2}.2 + {{35}^2}.6 + {{45}^2}.13}}{{40}} - {{25}^2}} \approx 17,03\).

Ta thấy \({s_B} > {s_A}\) nên dựa vào độ lệch chuẩn thì chiều cao của các loại cây được chăm sóc theo phương án \(B\) bị chênh lệch nhiều hơn so với phương án \(A\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP