Giả sử kết quả khảo sát hai khu vực \(A\) và \(B\) về độ tuổi kết hôn của một số phụ nữ vừa lập gia đình được cho ở bảng sau:

(a) Khoảng biến thiên của mẫu số liệu ghép nhóm ứng với khu vực A là: \(15\) (tuổi).
(b) Khoảng biến thiên của mẫu số liệu ghép nhóm ứng với khu vực B là: \(12\)(tuổi).
(c) Khoảng tứ phân vị của mẫu số liệu ghép nhóm ứng với khu vực A là: \(\frac{{61}}{3}\) (tuổi).
(d) Nếu so sánh theo khoảng tứ phân vị thì phụ nữ ở khu vực B có độ tuổi kết hôn đồng đều hơn.
Câu hỏi trong đề: Bài tập ôn tập Toán 12 Cánh diều Chương 3 có đáp án !!
Quảng cáo
Trả lời:
a) Đúng. Khoảng biến thiên của mẫu số liệu ghép nhóm ứng với khu vực A là: \(34 - 19 = 15\) (tuổi).
b) Đúng. Khoảng biến thiên của mẫu số liệu ghép nhóm ứng với khu vực B là: \(31 - 19 = 12\)(tuổi).
c) Sai. Cỡ mẫu \(n = 100\).
Gọi \({x_1};{x_2}; \ldots ;{x_{100}}\) là mẫu số liệu gốc về độ tuổi kết hôn của phụ nữ ở khu vực A được xếp theo thứ tự không giảm.
Ta có: \({x_1};{x_2}; \ldots ;{x_{10}} \in [19;22);{x_{11}}; \ldots ;{x_{37}} \in [22;25);{x_{38}}; \ldots ;{x_{68}} \in [25;28);{x_{69}}; \ldots ;{x_{93}} \in [28;31)\);
\({x_{94}}; \ldots ;{x_{100}} \in [31;34)\).
Tứ phân vị thứ nhất của mẫu số liệu gốc là \(\frac{1}{2}\left( {{x_{25}} + {x_{26}}} \right) \in [22;25)\). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: \({Q_1} = 22 + \frac{{\frac{{100}}{4} - 10}}{{27}}(25 - 22) = \frac{{71}}{3}\).
Tứ phân vị thứ ba của mẫu số liệu gốc là \(\frac{1}{2}\left( {{x_{75}} + {x_{76}}} \right) \in [28;31)\). Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: \({Q_3} = 28 + \frac{{\frac{{3.100}}{4} - (10 + 27 + 31)}}{{25}}(31 - 28) = \frac{{721}}{{25}}\).
Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \({\Delta _Q} = {Q_3} - {Q_1} = \frac{{388}}{{75}}\).
Gọi \({y_1};{y_2}; \ldots ;{y_{100}}\) là mẫu số liệu gốc về độ tuổi kết hôn của phụ nữ ở khu vực B được xếp theo thứ tự không giảm.
Ta có: \({y_1};{y_2}; \ldots ;{y_{47}} \in [19;22);{y_{48}}; \ldots ;{y_{87}} \in [22;25);{y_{88}}; \ldots ;{y_{98}} \in [25;30);{y_{99}};{y_{100}} \in [28;31)\).
Tứ phân vị thứ nhất của mẫu số liệu gốc là \(\frac{1}{2}\left( {{y_{25}} + {y_{26}}} \right) \in [19;22)\). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: \({Q_1}^\prime = 19 + \frac{{\frac{{100}}{4}}}{{47}}(22 - 19) = \frac{{968}}{{47}}\).
Tứ phân vị thứ ba của mẫu số liệu gốc là \(\frac{1}{2}\left( {{y_{75}} + {y_{76}}} \right) \in [22;25)\). Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: \({Q_3}^\prime = 22 + \frac{{\frac{{3.100}}{4} - 47}}{{40}}(25 - 22) = \frac{{241}}{{10}}\).
d) Đúng. Có \({\Delta _Q}^\prime < {\Delta _Q}\) nên phụ nữ ở khu vực B có độ tuổi kết hôn đồng đều hơn.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
\[[7;9)\].
\([9;11)\).
\([11;13)\).
\([13;15)\).
Lời giải
Đáp án đúng: B
Bảng tần số ghép nhóm theo giá trị đại diện là:

Số trung bình: \(\bar x = \frac{{2.6 + 7.8 + 7.10 + 3.12 + 1.14}}{{20}} = 9,4\).
Lời giải
Đáp án đúng: C
Số phần tử của mẫu là \(n = 60\).
Tần số tích lũy của các nhóm lần lượt là \(c{f_1} = 3,c{f_2} = 9,c{f_3} = 28,c{f_4} = 51,c{f_5} = 60\).
Ta có: \(\frac{n}{4} = \frac{{60}}{4} = 15\) mà \(9 < 15 < 28\) suy ra nhóm 3 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 15. Xét nhóm 3 là nhóm \(\left[ {60\,;\,70} \right)\) có \(s = 60,\;h = 10,{n_3} = 19\) và nhóm 2 là nhóm \(\left[ {50\,;\,60} \right)\) có \(c{f_2} = 9\).
Ta có tứ phân vị thứ nhất là: \({Q_1} = s + \left( {\frac{{15 - c{f_2}}}{{{n_3}}}} \right) \cdot h = 60 + \left( {\frac{{15 - 9}}{{19}}} \right) \cdot 10 = \frac{{1200}}{{19}}\).
Ta có: \(\frac{{3n}}{4} = \frac{{3.60}}{4} = 45\) mà \(28 < 45 < 51\) suy ra nhóm 4 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bẳng 45. Xét nhóm 4 là nhóm \(\left[ {70\,;\,80} \right)\) có \(t = 70,l = 10,{n_4} = 23\) và nhóm 3 là nhóm \(\left[ {60\,;\,70} \right)\) có \(c{f_3} = 28\).
Ta có tứ phân vị thứ ba là: \({Q_3} = t + \left( {\frac{{45 - c{f_3}}}{{{n_4}}}} \right).l = 70 + \left( {\frac{{45 - 28}}{{23}}} \right).10 = \frac{{1780}}{{23}}\).
Khoảng tứ phân vị của mẫu số liệu ghép nhóm trên là: \({Q_3} - {Q_1} = \frac{{1780}}{{23}} - \frac{{1200}}{{19}} \approx 14,23\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
\([0;20)\).
\([20;40)\).
\([40;60)\).
[60; 80).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.






