Câu hỏi:

09/10/2025 8 Lưu

Kết quả điều tra về số giờ làm thêm trong một tuần của 100 sinh viên được cho ở biểu đồ sau:

Kết quả điều tra về số giờ làm thêm trong một tuần của 100 sinh viên được cho ở biểu đồ sau:

Tìm khoảng tứ phân vị của số liệu đó (làm tròn kết quả đến hàng phần trăm). (ảnh 1)

Tìm khoảng tứ phân vị của số liệu đó (làm tròn kết quả đến hàng phần trăm).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

3,27

Từ mẫu số liệu ghép nhóm, ta có bảng thống kê số giờ làm thêm trong một tuần của 100 sinh viên như sau:

index_html_f1250e65f43c5e7b.png

Cỡ mẫu \(n = 100\).

Gọi \({x_1};{x_2}; \ldots ;{x_{100}}\) là mẫu số liệu được xếp theo thứ tự không giảm.

Tứ phân vị thứ hai của dãy số liệu \({x_1};{x_2}; \ldots ;{x_{100}}\) là \(\frac{1}{2}\left( {{x_{50}} + {x_{51}}} \right)\).

Do \({x_{50}}\) và \({x_{51}}\) thuộc nhóm \([6;8)\) nên \({Q_2} = 6 + \frac{{\frac{{2 \cdot 100}}{4} - 32}}{{37}} \cdot (8 - 6) \approx 6,97\).

Tứ phân vị thứ nhất của dãy số liệu \({x_1};{x_2}; \ldots ;{x_{100}}\) là \(\frac{1}{2}\left( {{x_{25}} + {x_{26}}} \right)\). Do \({x_{25}}\) và \({x_{26}}\) thuộc nhóm \([4;6)\) nên \({Q_1} = 4 + \frac{{\frac{{1.100}}{4} - 12}}{{20}} \cdot (6 - 4) = 5,3\).

Tứ phân vị thứ ba của dãy số liệu \({x_1};{x_2}; \ldots ;{x_{100}}\) là \(\frac{1}{2}\left( {{x_{75}} + {x_{76}}} \right)\). Do \({x_{75}}\) và \({x_{76}}\) thuộc nhóm \([8;10)\) nên \({Q_3} = 8 + \frac{{\frac{{3 \cdot 100}}{4} - 69}}{{21}} \cdot (10 - 8) = \frac{{60}}{7}\).

Khoảng tứ phân vị là \(\Delta Q = {Q_3} - {Q_1} = \frac{{60}}{7} - 5,3 \approx 3,27\).

Đáp án: 3,27.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

index_html_bb1639bac155ab1e.png

Cỡ mẫu: \(n = 18\).

Số trung bình: \(\bar x = \frac{{2.7,3 + 4.7,5 + 7.7,7 + 5.7,9}}{{18}} \approx 7,67\).

Phương sai: \({s^2} = \frac{{2.7,{3^2} + 4.7,{5^2} + 7.7,{7^2} + 5.7,{9^2}}}{{18}} - 7,{67^2} \approx 0,04\).

Độ lệch chuẩn: \(s \approx \sqrt {0,04} \approx 0,19\).

Đáp án: 0,19.

Lời giải

a) Đúng. Ta có bảng sau

index_html_16d20f469578d5e6.png

b) Sai. Cỡ mẫu \(n = 30\).

Gọi \({x_1};{x_2}; \ldots ;{x_{30}}\) là mẫu số liệu gốc về thời gian tập thể dục buổi sáng mỗi ngày của bác An được xếp theo thứ tự không giảm.

Ta có: \({x_1};{x_2}; \ldots ;{x_{25}} \in [20;25);{x_{26}}; \ldots ;{x_{30}} \in [25;30)\).

Tứ phân vị thứ nhất của mẫu số liệu gốc là \({x_8} \in [20;25)\). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: \({Q_1} = 20 + \frac{{\frac{{30}}{4}}}{{25}}\left( {25 - 20} \right) = \frac{{43}}{2}\).

Tứ phân vị thứ ba của mẫu số liệu gốc là \({x_{23}} \in [20;25)\). Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: \({Q_3} = 20 + \frac{{\frac{{3.30}}{4}}}{{25}}\left( {25 - 20} \right) = \frac{{49}}{2}\).

Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \({\Delta _Q} = {Q_3} - {Q_1} = 3\).

Gọi \({y_1};{y_2}; \ldots ;{y_{30}}\) là mẫu số liệu gốc về thời gian tập thể dục buổi sáng mỗi ngày của bác Bình được xếp theo thứ tự không giảm.

Ta có: \({y_1};{y_2}; \ldots ;{y_5} \in [15;20);{y_6}; \ldots ;{y_{17}} \in [20;25);{y_{18}}; \ldots ;{y_{25}} \in [25;30);{y_{26}};{y_{27}};{y_{28}} \in [30;35)\);

\({y_{29}};{y_{30}} \in [35;40)\).

Tứ phân vị thứ nhất của mẫu số liệu gốc là \({y_8} \in [20;25)\). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: \({Q_1}^\prime = 20 + \frac{{\frac{{30}}{4}}}{{12}}\left( {25 - 20} \right) = \frac{{185}}{8}\).

c) Đúng. Tứ phân vị thứ ba của mẫu số liệu gốc là \({y_{23}} \in [25;30)\). Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: \({Q_3}^\prime = 25 + \frac{{\frac{{3.30}}{4} - \left( {5 + 12} \right)}}{8}\left( {30 - 25} \right) = \frac{{455}}{{16}}\).

d) Sai. Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm về thời gian tập thể dục buổi sáng mỗi ngày của bác Bình lớn hơn bác An.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP