Câu hỏi:

09/10/2025 82 Lưu

Biểu đồ dưới đây mô tả kết quả điều tra về mức lương khởi điểm (đơn vị: triệu đồng) của một số công nhân ở hai khu vực \(A\) và \(B\).

(a) Hãy xác định giá trị đại diện cho mỗi nhóm và lập bảng tần số ghép nhóm cho mẫu số liệu đó.

(b) Nếu so sánh theo độ lệch chuẩn của mẫu số liệu ghép nhóm thì công nhân ở khu vực nào có mức lương khởi điểm đồng đều hơn?

Mức lương khởi điểm của công nhân ở hai khu vực \(A\) và \(B\)

Biểu đồ dưới đây mô tả kết quả điều tra về mức lương khởi điểm (đơn vị: triệu đồng) của một số công nhân ở hai khu vực \(A\) và \(B\).
(a) Hãy xác định giá trị đại diện cho mỗi nhóm và lập bả (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Ta có bảng sau:

index_html_b9cfddca268d3b76.png

b)Xét mẫu số liệu của khu vực \(A\) :

Cỡ mẫu là \({n_A} = 4 + 5 + 5 + 4 + 2 = 20\).

Số trung bình của mẫu số liệu ghép nhóm là: \({\overline x _A} = \frac{{4 \cdot 5,5 + 5.6,5 + 5 \cdot 7,5 + 4.8,5 + 2.9,5}}{{20}} = 7,25.\)

Phương sai của mẫu số liệu ghép nhóm là

\(S_A^2 = \frac{1}{{20}}\left( {4 \cdot 5,{5^2} + 5 \cdot 6,{5^2} + 5 \cdot 7,{5^2} + 4 \cdot 8,{5^2} + 2 \cdot 9,{5^2}} \right) - {(7,25)^2} = 1,5875.\)

Độ lệch chuẩn của mẫu số liệu ghép nhóm là: \({S_A} = \sqrt {1,5875} .\)

Xét mẫu số liệu của khu vực \(B\) :

Cỡ mẫu là \({n_B} = 3 + 6 + 5 + 5 + 1 = 20\).

Số trung bình của mẫu số liệu ghép nhóm là: \({\overline x _B} = \frac{{3 \cdot 5,5 + 6.6,5 + 5 \cdot 7,5 + 5.8,5 + 1.9,5}}{{20}} = 7,25.\)

Phương sai của mẫu số liệu ghép nhóm là

\(S_B^2 = \frac{1}{{20}}\left( {3 \cdot 5,{5^2} + 6 \cdot 6,{5^2} + 5 \cdot 7,{5^2} + 5 \cdot 8,{5^2} + 1 \cdot 9,{5^2}} \right) - {(7,25)^2} = 1,2875.\)

Độ lệch chuẩn của mẫu số liệu ghép nhóm là: \({S_B} = \sqrt {1,2875} \).

Do \({S_A} > {S_B}\) nên nếu so sánh theo độ lệch chuẩn của mẫu số liệu ghép nhóm thì mức lương khởi điểm của công nhân khu vực \(B\) đồng đều hơn của công nhân khu vực \(A\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng: B

Bảng tần số ghép nhóm theo giá trị đại diện là:

index_html_85dbe11c9053c12a.png

Số trung bình: \(\bar x = \frac{{2.6 + 7.8 + 7.10 + 3.12 + 1.14}}{{20}} = 9,4\).

Lời giải

Đáp án đúng: B

Ta có cỡ mẫu là \[n = 5 + 9 + 12 + 10 + 6 = 42\].

Gọi \({x_1},{x_2}, \ldots ,{x_{42}}\) là thời gian tập thể dục trong ngày của 42 học sinh khối 12 và giả sử dãy này đã sắp xếp theo thứ tự tăng dần.

Khi đó tứ phân vị thứ nhất \({Q_1}\) là trung vị của dãy gồm 21 số liệu đầu nên \({Q_1} = {x_{11}}\). Do \({x_{11}}\) thuộc nhóm \[\left[ {20;40} \right)\]nên nhóm này chứa \[{Q_1}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP