Một vườn thú ghi lại tuổi thọ (đơn vị: năm) của 20 con hổ và thu được kết quả như sau:
Khoảng biến thiên của mẫu số liệu ghép nhóm này là
3.
4.
5.
6.
Câu hỏi trong đề: Đề kiểm tra Toán 12 Cánh diều Chương 3 có đáp án !!
Quảng cáo
Trả lời:

Đáp án đúng: C
Khoảng biến thiên: \(19 - 14 = 5\).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng: D
Cỡ mẫu \(n = 20\). Gọi \({x_1};{x_2}; \ldots ;{x_{20}}\)là mẫu số liệu gốc về quãng đường đi bộ mỗi ngày của bác Hương trong 20 ngày được xếp theo thứ tự không giảm.
Ta có: \({x_1}; \ldots ;{x_3} \in [2,7;3,0);{x_4}; \ldots ;{x_9} \in [3,0;3,3);{x_{10}}; \ldots ;{x_{14}} \in [3,3;3,6)\)
\({x_{15}}; \ldots ;{x_{18}} \in [3,6;3,9){\rm{;}}\,\,\,\,\,\,\,\,\,\,\,\,{x_{19}};{x_{20}} \in [3,9;4,2).\)
Tứ phân vị thứ nhất của mẫu số liệu gốc là \(\frac{1}{2}\left( {{x_5} + {x_6}} \right) \in [3,0;3,3)\).
Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: \({Q_1} = 3,0 + \frac{{\frac{{20}}{4} - 3}}{6}(3,3 - 3,0) = 3,1\).
Tứ phân vị thứ ba của mẫu số liệu gốc là \(\frac{1}{2}\left( {{x_{15}} + {x_{16}}} \right) \in \left[ {3,6;3,9} \right)\).
Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là:
\({Q_3} = 3,6 + \frac{{\frac{{3.20}}{4} - \left( {3 + 6 + 5} \right)}}{4}\left( {3,9 - 3,6} \right) = 3,675\).
Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \({\Delta _Q} = {Q_3} - {Q_1} = 0,575\).
Lời giải
a) Sai. Khoảng biến thiên của điểm thi của học sinh hai lớp 12A là \({R_A} = 10 - 6 = 4\).
Khoảng biến thiên của điểm thi của học sinh hai lớp 12B là \({R_B} = 10 - 5 = 5\).
Vì \({R_B} > {R_A}\) nên điểm thi khảo sát môn Toán của lớp 12B phân tán hơn của lớp 12A.
b) Sai. Điểm trung bình môn Toán trong kỳ khảo sát của lớp 12A là :
\({\overline x _A} = \frac{{2.6,5 + 6.7,5 + 12.8,5 + 10.9,5}}{{30}} = \frac{{17}}{2} = 8,5\).
Số điểm trung bình môn Toán trong kỳ khảo sát của lớp 12B là :
\({\overline x _B} = \frac{{2.5,5 + 12.6,5 + 10.7,5 + 5.8,5 + 1.9,5}}{{30}} = \frac{{36}}{5} = 7,2\).
Vì \({\bar x_A} > {\bar x_B}\) nên số điểm trung bình môn Toán trong kỳ kiểm tra đánh giá của lớp 12A lớn hơn của lớp 12B.
c) Đúng. Lớp A có ta có: \(\frac{n}{4} = 7,5\,\,;\,\,\frac{n}{2} = 15;\,\,\frac{{3n}}{4} = 22,5\).
.
d) Đúng. Lớp B có ta có: \(\frac{n}{4} = 7,5\,\,;\,\,\frac{n}{2} = 15;\,\,\frac{{3n}}{4} = 22,5\).
.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
\(4.\)
\(5.\)
\[256.\]
\(50.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
\[0,4252\].
\[0,5268\].
\[0,5314\].
\[0,6214\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lĩnh vực\(A\) có độ rủi ro bằng lĩnh vực \(B\).
Lĩnh vực\(A\) có độ rủi ro cao hơn lĩnh vực \(B\).
Lĩnh vực \(A\) có độ rủi ro thấp hơn lĩnh vực \(B\).
Không so sánh được.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.