Câu hỏi:

09/10/2025 23 Lưu

Kết quả đo chiều cao của 200 cây keo 3 năm tuổi ở một nông trường được biểu diễn ở biểu đồ dưới đây.

Kết quả đo chiều cao của 200 cây keo 3 năm tuổi ở một nông trường được biểu diễn ở biểu đồ dưới đây.

Hãy tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm cho bởi biểu đồ trên (kết quả làm trò (ảnh 1)

Hãy tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm cho bởi biểu đồ trên (kết quả làm tròn đến chữ số thập phân thứ hai).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

0,53

Từ biểu đồ ta có mẫu số liệu ghép nhóm như sau:

index_html_4c0d25e3965f3467.png

Cỡ mẫu: \[n = 200\].

Gọi \[{x_1},{x_2},...,{x_{200}}\] là mẫu số liệu gốc được sắp xếp theo thứ tự không giảm.

Ta có \({x_1},\, \ldots ,\,{x_{20}} \in \left[ {8,5;\,\,8,8} \right)\),\({x_{21}},\, \ldots ,\,{x_{55}} \in \left[ {8,8;\,\,9,1} \right)\),\({x_{56}},\, \ldots ,\,{x_{115}} \in \left[ {9,1;\,\,9,4} \right)\),

\({x_{116}}, \ldots ,\,{x_{170}} \in \left[ {9,4;\,\,9,7} \right)\),\({x_{171}},\, \ldots ,{x_{200}} \in \left[ {9,7;\,\,10,0} \right)\).

Tứ phân vị thứ nhất của mẫu số liệu gốc là \(\frac{{{x_{50}} + {x_{11}}}}{2} \in \left[ {8,8;\,\,9,1} \right)\). Do đó tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là \({Q_1} = 8,8 + \frac{{\frac{{200}}{4} - 20}}{{35}}.\left( {9,1 - 8,8} \right) = \frac{{317}}{{35}}\).

Tứ phân vị thứ ba của mẫu số liệu gốc là \(\frac{{{x_{150}} + {x_{151}}}}{2} \in \left[ {9,4;\,\,9,7} \right)\). Do đó tứ phân vị thứ ba của mẫu số liệu ghép nhóm là \({Q_3} = 9,4 + \frac{{\frac{{3.200}}{4} - 115}}{{55}}.\left( {9,7 - 9,4} \right) = \frac{{211}}{{22}}\).

Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là \({\Delta _Q} = {Q_3} - {Q_1} = \frac{{211}}{{22}} - \frac{{317}}{{35}} = \frac{{411}}{{770}} \approx 0,53\).

Đáp án: 0,53.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng: A

Trung bình thời gian chơi thể thao trong một ngày của một học sinh là:

\(\overline x = \frac{{10.5 + 30.9 + 50.12 + 70.10 + 90.6}}{{42}} = \frac{{360}}{7} = 51,42857143\).

Phương sai của mẫu số liệu là:

\({S^2} = \frac{{{{5.10}^2} + {{9.30}^2} + {{12.50}^2} + {{10.70}^2} + {{6.90}^2}}}{{42}} - {\left( {\frac{{360}}{7}} \right)^2} = \frac{{29300}}{{49}} = 597,9591837 \approx 598\).

Phương sai của mẫu số liệu được làm tròn đến chữ số thập phân thứ nhất là \({S^2} \approx 598\).

Lời giải

Picture 1

a) Sai. Khoảng biến thiên của điểm thi của học sinh hai lớp 12A là \({R_A} = 10 - 6 = 4\).

Khoảng biến thiên của điểm thi của học sinh hai lớp 12B là \({R_B} = 10 - 5 = 5\).

Vì \({R_B} > {R_A}\) nên điểm thi khảo sát môn Toán của lớp 12B phân tán hơn của lớp 12A.

b) Sai. Điểm trung bình môn Toán trong kỳ khảo sát của lớp 12A là :

\({\overline x _A} = \frac{{2.6,5 + 6.7,5 + 12.8,5 + 10.9,5}}{{30}} = \frac{{17}}{2} = 8,5\).

Số điểm trung bình môn Toán trong kỳ khảo sát của lớp 12B là :

\({\overline x _B} = \frac{{2.5,5 + 12.6,5 + 10.7,5 + 5.8,5 + 1.9,5}}{{30}} = \frac{{36}}{5} = 7,2\).

Vì \({\bar x_A} > {\bar x_B}\) nên số điểm trung bình môn Toán trong kỳ kiểm tra đánh giá của lớp 12A lớn hơn của lớp 12B.

c) Đúng. Lớp A có ta có: \(\frac{n}{4} = 7,5\,\,;\,\,\frac{n}{2} = 15;\,\,\frac{{3n}}{4} = 22,5\).

.

d) Đúng. Lớp B có ta có: \(\frac{n}{4} = 7,5\,\,;\,\,\frac{n}{2} = 15;\,\,\frac{{3n}}{4} = 22,5\).

.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP