Kết quả đo chiều cao của 200 cây keo 3 năm tuổi ở một nông trường được biểu diễn ở biểu đồ dưới đây.

Hãy tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm cho bởi biểu đồ trên (kết quả làm tròn đến chữ số thập phân thứ hai).
Câu hỏi trong đề: Đề kiểm tra Toán 12 Cánh diều Chương 3 có đáp án !!
Quảng cáo
Trả lời:
Đáp án:
Từ biểu đồ ta có mẫu số liệu ghép nhóm như sau:

Cỡ mẫu: \[n = 200\].
Gọi \[{x_1},{x_2},...,{x_{200}}\] là mẫu số liệu gốc được sắp xếp theo thứ tự không giảm.
Ta có \({x_1},\, \ldots ,\,{x_{20}} \in \left[ {8,5;\,\,8,8} \right)\),\({x_{21}},\, \ldots ,\,{x_{55}} \in \left[ {8,8;\,\,9,1} \right)\),\({x_{56}},\, \ldots ,\,{x_{115}} \in \left[ {9,1;\,\,9,4} \right)\),
\({x_{116}}, \ldots ,\,{x_{170}} \in \left[ {9,4;\,\,9,7} \right)\),\({x_{171}},\, \ldots ,{x_{200}} \in \left[ {9,7;\,\,10,0} \right)\).
Tứ phân vị thứ nhất của mẫu số liệu gốc là \(\frac{{{x_{50}} + {x_{11}}}}{2} \in \left[ {8,8;\,\,9,1} \right)\). Do đó tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là \({Q_1} = 8,8 + \frac{{\frac{{200}}{4} - 20}}{{35}}.\left( {9,1 - 8,8} \right) = \frac{{317}}{{35}}\).
Tứ phân vị thứ ba của mẫu số liệu gốc là \(\frac{{{x_{150}} + {x_{151}}}}{2} \in \left[ {9,4;\,\,9,7} \right)\). Do đó tứ phân vị thứ ba của mẫu số liệu ghép nhóm là \({Q_3} = 9,4 + \frac{{\frac{{3.200}}{4} - 115}}{{55}}.\left( {9,7 - 9,4} \right) = \frac{{211}}{{22}}\).
Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là \({\Delta _Q} = {Q_3} - {Q_1} = \frac{{211}}{{22}} - \frac{{317}}{{35}} = \frac{{411}}{{770}} \approx 0,53\).
Đáp án: 0,53.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
\(598\).
\(597\).
\(2477,1\).
\(256,2\).
Lời giải
Đáp án đúng: A
Trung bình thời gian chơi thể thao trong một ngày của một học sinh là:
\(\overline x = \frac{{10.5 + 30.9 + 50.12 + 70.10 + 90.6}}{{42}} = \frac{{360}}{7} = 51,42857143\).
Phương sai của mẫu số liệu là:
\({S^2} = \frac{{{{5.10}^2} + {{9.30}^2} + {{12.50}^2} + {{10.70}^2} + {{6.90}^2}}}{{42}} - {\left( {\frac{{360}}{7}} \right)^2} = \frac{{29300}}{{49}} = 597,9591837 \approx 598\).
Phương sai của mẫu số liệu được làm tròn đến chữ số thập phân thứ nhất là \({S^2} \approx 598\).
Lời giải

a) Sai. Khoảng biến thiên của điểm thi của học sinh hai lớp 12A là \({R_A} = 10 - 6 = 4\).
Khoảng biến thiên của điểm thi của học sinh hai lớp 12B là \({R_B} = 10 - 5 = 5\).
Vì \({R_B} > {R_A}\) nên điểm thi khảo sát môn Toán của lớp 12B phân tán hơn của lớp 12A.
b) Sai. Điểm trung bình môn Toán trong kỳ khảo sát của lớp 12A là :
\({\overline x _A} = \frac{{2.6,5 + 6.7,5 + 12.8,5 + 10.9,5}}{{30}} = \frac{{17}}{2} = 8,5\).
Số điểm trung bình môn Toán trong kỳ khảo sát của lớp 12B là :
\({\overline x _B} = \frac{{2.5,5 + 12.6,5 + 10.7,5 + 5.8,5 + 1.9,5}}{{30}} = \frac{{36}}{5} = 7,2\).
Vì \({\bar x_A} > {\bar x_B}\) nên số điểm trung bình môn Toán trong kỳ kiểm tra đánh giá của lớp 12A lớn hơn của lớp 12B.
c) Đúng. Lớp A có ta có: \(\frac{n}{4} = 7,5\,\,;\,\,\frac{n}{2} = 15;\,\,\frac{{3n}}{4} = 22,5\).
.
d) Đúng. Lớp B có ta có: \(\frac{n}{4} = 7,5\,\,;\,\,\frac{n}{2} = 15;\,\,\frac{{3n}}{4} = 22,5\).
.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
\[0,4252\].
\[0,5268\].
\[0,5314\].
\[0,6214\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.






