Cho hệ bất phương trình: \(\left\{ {\begin{array}{*{20}{l}}\begin{array}{l}3x + 2y \ge 9\\x - 2y \le 3\\x + y \le 6\\x\quad \ge 1\end{array}\end{array}} \right.\left( I \right)\). Khi đó:
a) Miền nghiệm của hệ bất phương trình là miền tam giác
b) \((3;2)\) là một nghiệm của hệ bất phương trình
c) \(x = 1,y = 3\) là nghiệm của hệ bất phương trình (I) sao cho \(F = 3x - y\) đạt giá trị lớn nhất
d) \(x = 1,y = 5\) là nghiệm của hệ bất phương trình (I) sao cho \(F = 3x - y\) đạt giá trị nhỏ nhất
Cho hệ bất phương trình: \(\left\{ {\begin{array}{*{20}{l}}\begin{array}{l}3x + 2y \ge 9\\x - 2y \le 3\\x + y \le 6\\x\quad \ge 1\end{array}\end{array}} \right.\left( I \right)\). Khi đó:
a) Miền nghiệm của hệ bất phương trình là miền tam giác
b) \((3;2)\) là một nghiệm của hệ bất phương trình
c) \(x = 1,y = 3\) là nghiệm của hệ bất phương trình (I) sao cho \(F = 3x - y\) đạt giá trị lớn nhất
d) \(x = 1,y = 5\) là nghiệm của hệ bất phương trình (I) sao cho \(F = 3x - y\) đạt giá trị nhỏ nhất
Quảng cáo
Trả lời:
a) Miền nghiệm của hệ (I) là miền tứ giác \(ABCD\) với \(A(3;0),B(5;1),C(1;5),D(1;3)\) (Hình).

b) \((3;2)\) là một nghiệm của hệ bất phương trình
c) Tính giá trị của \(F = 3x - y\) tại các cặp số \((x;y)\) là toạ độ của các đỉnh tứ giác \(ABCD\) rồi so sánh các giá trị đó, ta được \(F\) đạt giá trị lớn nhất bằng 14 tại \(x = 5,y = 1\)
d) \(F\) đạt giá trị nhỏ nhất bằng \( - 2\) tại \(x = 1,y = 5\).
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
|
a) Đúng |
b) Sai |
c) Sai |
d) Đúng |
a) Gọi \(x,y\) (đơn vị: triệu đồng) tiền bác Minh đầu tư vào kho Ta có hệ bất phương trình:
\(\left\{ {\begin{array}{*{20}{l}}{x + y \le 240}\\{y \ge 40}\\{x \ge 3y}\end{array}} \right.\)
b) Miền nghiệm của hệ trên là miền tam giác \(ABC\) với \(A(180;60),B(120;40)\), \(C(200;40)\) ở Hình.

c) Điểm \(C(200;40)\) thuộc miền nghiệm của hệ bất phương trình tiền bác Minh đầu tư vào kho
d) Điểm \(A(180;60)\) là điểm có tung độ lớn nhất thuộc miền nghiệm của hệ bất phương trình tiền bác Minh đầu tư vào kho
Lời giải
Miền nghiệm của hệ là miền tam giác \(ABC\) với \(A( - 5; - 1),B( - 1; - 2)\) và \(C(5;4)\). Lập bảng:

|
Đỉnh |
\(A( - 5; - 1)\) |
\(B( - 1; - 2)\) |
\(C(5;4)\) |
|
\(T\) |
\( - 17\) |
\( - 3\) |
3 |
Vậy \(T\) đạt giá trị nhỏ nhất bằng \( - 17\) khi \(x = - 5\) và \(y = - 1\).
Do đó \({x_0} = - 5\) và \({y_0} = - 1 \Rightarrow x_0^2 + y_0^2 = 26\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.