Câu hỏi:

09/10/2025 28 Lưu

Có ba nhóm máy \(X,Y,Z\) dùng để sản xuất ra hai loại sản phẩm I và II. Để sản xuất một đơn vị sản phẩm mỗi loại lần lượt phải dùng các máy thuộc các nhóm khác nhau. Số máy trong một nhóm và số máy của từng nhóm cần thiết để sản xuất ra một đơn vị sản phẩm thuộc mỗi loại được dùng cho trong bảng sau:

Nhóm

 

Số máy trong mỗi nhóm

 Số máy trong từng nhóm để sản xuất ra một đơn vị

 Loại I

 Loại II

\(X\)

 10

 2

 2

 Y

 4

 0

 2

\(Z\)

 12

 2

 4

Một đơn vị sản phẩm loại I lãi 3 nghìn đồng, một đơn vị sản phẩm loại II lãi 5 nghìn đồng. Hãy lập kế hoạch sản xuất đề cho tổng số tiền lãi thu được là cao nhất.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \(x\) là số đơn vị sản phẩm loại I, \(y\) là số đơn vị sản phẩm loại II sản xuất ra. Như vậy tiền lãi có được là \(F\left( {x;y} \right) = 3x + 5y\) (nghìn đồng).

Theo giả thiết, số máy cần dùng nhóm X: \(2x + 2y\) (máy); số máy cần dùng ở nhóm Y là \(0x + 2y\) (máy); số máy cần dùng ở nhóm \(Z\) là \(2x + 4y\) (máy).

Ta có hệ bất phương trình .

Có ba nhóm máy X,Y,Z dùng để sản xuất ra hai loại sản phẩm I và II. Để sản xuất một đơn vị sản phẩm mỗi loại lần lượt phải dùng các máy thuộc các nhóm khác nhau. (ảnh 1)

Miền nghiệm của hệ \((*)\) được biểu diễn là miền của ngũ giác \(OABCD\) với \(O(0;0),A(0;2),B(2;2),C(4;1),D(5;0)\).

Xét \(O(0;0)\), ta có \(F(0;0) = 3.0 + 5.0 = 0\);

Xét \(A(0;2)\), ta có \(F(0;2) = 3.0 + 5.2 = 10\);

Xét \(B(2;2)\), ta có \(F(2;2) = 3.2 + 5.2 = 16\);

Xét \(C(4;1)\), ta có \(F(4;1) = 3.4 + 5.1 = 17\);

Xét \(D(5;0)\), ta có \(F(5;0) = 3.5 + 5.0 = 15\).

Từ các kết quả trên, ta thấy khoản lãi lớn nhất \((F(x;y)\) lớn nhất) bằng 17 (ngàn đồng), khi đó người ta cần làm ra 4 sản phẩm loại I và 1 sản phẩm loại II (tức là \(x = 4,y = 1\) ).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Miền nghiệm của hệ (I) là miền tứ giác \(ABCD\) với \(A(3;0),B(5;1),C(1;5),D(1;3)\) (Hình).

Cho hệ bất phương trình: \(\left\{ {\begin{array}{*{20}{l}}\begin{array}{l}3x + 2y \ge 9\\x - 2y \le 3\\x + y \le 6\\x\quad  \ge 1\end{array}\end{array}} \right.\left( I \right)\). Khi đó: (ảnh 1)

b) \((3;2)\) là một nghiệm của hệ bất phương trình

c) Tính giá trị của \(F = 3x - y\) tại các cặp số \((x;y)\) là toạ độ của các đỉnh tứ giác \(ABCD\) rồi so sánh các giá trị đó, ta được \(F\) đạt giá trị lớn nhất bằng 14 tại \(x = 5,y = 1\)

d) \(F\) đạt giá trị nhỏ nhất bằng \( - 2\) tại \(x = 1,y = 5\).

Lời giải

a) Đúng

b) Sai

c) Sai

d) Đúng

 

a) Gọi \(x,y\) (đơn vị: triệu đồng) tiền bác Minh đầu tư vào kho Ta có hệ bất phương trình:

\(\left\{ {\begin{array}{*{20}{l}}{x + y \le 240}\\{y \ge 40}\\{x \ge 3y}\end{array}} \right.\)

b) Miền nghiệm của hệ trên là miền tam giác \(ABC\) với \(A(180;60),B(120;40)\), \(C(200;40)\) ở Hình.

Bác Minh có kế hoạch đầu tư không quá 240 triệu đồng vào hai khoản \(X\) và khoản Y. Để đạt được lợi nhuận thì khoản \(Y\) phải đầu tư ít nhất 40 triệu đồng và số tiền đầu tư cho khoản \(X\) phải ít nhất gấp ba lần số tiền cho khoản \(Y\). Khi đó: (ảnh 1)

c) Điểm \(C(200;40)\) thuộc miền nghiệm của hệ bất phương trình tiền bác Minh đầu tư vào kho

d) Điểm \(A(180;60)\) là điểm có tung độ lớn nhất thuộc miền nghiệm của hệ bất phương trình tiền bác Minh đầu tư vào kho

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[ - 10\].                    
B. \[12\].                     
C. \[ - 8\].                                  
D. \[ - 6\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP