Một xe ô tô đang chạy với tốc độ \[65\,{\rm{km/h}}\]thì người lái xe bất ngờ phát hiện chướng ngại vật trên đường cách đó \[50\,{\rm{m}}\]. Người lái xe phản ứng một giây, sau đó đạp phanh khẩn cấp. Kể từ thời điểm này, ô tô chuyển động chậm dần đều với tốc độ \[v\left( t \right) = - 10t + 20\,\left( {{\rm{m/s}}} \right)\], trong đó \[t\] là thời gian tính bằng giây kể từ lúc đạp phanh. Gọi \[S\left( t \right)\] là quãng đường ô tô đi được trong \[t\] (giây) kể từ lúc đạp phanh.
(a) Quãng đường \[S\left( t \right)\] mà xe ô tô đi được trong thời gian \[t\] (giây) là một nguyên hàm của hàm số \[v\left( t \right)\].
(b) \[S\left( t \right) = - 5{t^2} + 20t\].
(c) Thời gian kể từ lúc đạp phanh đến khi xe ô tô dừng hẳn là 20 giây.
(d) Xe ô tô đó không va chạm vào chướng ngại vật trên đường.
Câu hỏi trong đề: Đề kiểm tra Toán 12 Cánh diều Chương 4 có đáp án !!
Quảng cáo
Trả lời:

a) Đúng.
b) Đúng. \[\int {v\left( t \right){\rm{dt}}} = \int {\left( { - 10t + 20} \right)\,{\rm{dt}}} = - 5{t^2} + 20t + C\].
Suy ra: \[S\left( t \right) = - 5{t^2} + 20t + C\]; \[S\left( 0 \right) = 0\]\[ \Rightarrow C = 0\]\[ \Rightarrow S\left( t \right) = - 5{t^2} + 20t\].
c) Sai. Ô tô dừng hẳn khi \[v\left( t \right) = 0\]\[ \Leftrightarrow t = 2\].
d) Đúng. \[65\,{\rm{km/h}}\,{\rm{ = }}\,\,\frac{{325}}{{18}}\,{\rm{m/s}}\].
Người lái xe phản ứng một giây khi phát hiện chướng ngại vật, sau giây đó ô tô đi được \[\frac{{325}}{{18}}\,\left( {\rm{m}} \right).\]
Quãng đường ô tô đi được kể từ lúc đạp phanh đến khi ô tô dừng hẳn là:
\[S\left( 2 \right) = - {5.2^2} + 20.2 = 20\,\left( {\rm{m}} \right)\].
Vậy quãng đường ô tô đi được kể từ lúc phát hiện chướng ngại vật đến khi ô tô dừng hẳn là:
\[\frac{{325}}{{18}} + 20 = \frac{{685}}{{18}}\,\left( {\rm{m}} \right) < 50\,\left( {\rm{m}} \right)\]. Suy ra, ô tô không va chạm vào chướng ngại vật trên đường.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gắn hệ trục tọa độ \[Oxy\] như hình vẽ.
Khi đó \[A\left( { - \sqrt 3 ;0} \right),B\left( {\sqrt 3 ;0} \right),C\left( {0;3} \right).\]
Parabol đi qua ba điểm \[A\left( { - \sqrt 3 ;0} \right),B\left( {\sqrt 3 ;0} \right),C\left( {0;3} \right)\] nên parabol có phương trình là \[y = - {x^2} + 3.\]
Đường tròn ngoại tiếp tam giác \[ABC\] có tâm \[O\left( {0;1} \right)\] và bán kính \[R = 2\] nên có phương trình là \[{x^2} + {\left( {y - 1} \right)^2} = 4\].
Suy ra \[y = 1 - \sqrt {4 - {x^2}} \] (Phần nằm dưới trục hoành).
Diện tích phần gạch là \[S = \int\limits_{ - \sqrt 3 }^{\sqrt 3 } {\left[ { - {x^2} + 3 - \left( {1 - \sqrt {4 - {x^2}} } \right)} \right]{\rm{d}}x} \].
Do đó diện tích phần không gạch là \[S' = \pi {.2^2} - S \approx 3,18\,\,\left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right){\rm{.}}\]
Đáp án: 3,18.
Lời giải
Thể tích cát ban đầu là: \(\int\limits_0^{20} {v\left( t \right){\rm{d}}t} = \int\limits_0^{20} {0,2t + 13\,{\rm{d}}t} = 300\,\,{\rm{c}}{{\rm{m}}^{\rm{3}}}\).
Bán kính đường tròn đáy parabol tròn xoay khi chiều cao cát còn 4cm là: \(\frac{{8\pi }}{{2\pi }} = 4\).
Xét parabol \(\left( P \right):y = a\sqrt x \) đi qua điểm \(A\left( {4;4} \right)\) như hình vẽ
Ta có: \(A\left( {4;4} \right) \in \left( P \right) \Rightarrow 4 = a\sqrt 4 \Rightarrow a = 2\). Suy ra \(\left( P \right):y = 2\sqrt x \).
Khi đó thể tích parabol tròn xoay tạo ra bằng cách xoay hình phẳng giới hạn bởi parabol \(\left( P \right)\), trục \(Ox\) và hai đường thẳng \(x = 0\), \(x = h\) quanh trục \(Ox\) là:
\(V = \pi \int\limits_0^h {{{\left( {2\sqrt x } \right)}^2}{\rm{d}}x} = \frac{{4\pi {x^2}}}{2}\left| {\begin{array}{*{20}{c}}{^h}\\{_0}\end{array}} \right. = 2\pi {h^2}\) (đvtt).
Suy ra: \(2\pi {h^2} = 300\) \( \Rightarrow h = \sqrt {\frac{{150}}{\pi }} \).
Vậy chiều cao khối trụ bên ngoài là: \(2.\left( {\frac{3}{2}.\sqrt {\frac{{150}}{\pi }} } \right) \approx 21\,\,{\rm{cm}}\).
Đáp án: 21.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
\(S = \int\limits_0^7 {( - \sin x + {\rm{cos}}x){\rm{d}}x} \).
\[S = \int\limits_0^7 {\left| {{\rm{sin}}x - {\rm{cos}}x} \right|} {\rm{d}}x\].
\[S = \int\limits_0^7 {({\rm{sin}}x - {\rm{cos}}x){\rm{d}}x} \].
\[S = \int\limits_0^7 {({\rm{sin}}x + {\rm{cos}}x){\rm{d}}x} \].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.