Trong một cuộc thi pha chế, hai đội A, B được sử dụng tối đa \(24g\) hương liệu, \(9\) lít nước và \(210\)g đường để pha chế nước cam và nước táo. Để pha chế \(1\) lít nước cam cần \(30\)g đường, \(1\) lít nước và \(1\)g hương liệu; pha chế \(1\) lít nước táo cần \(10\)g đường, \(1\) lít nước và \(4\)g hương liệu. Mỗi lít nước cam nhận được \(60\) điểm thưởng, mỗi lít nước táo nhận được \(80\) điểm thưởng. Đội A pha chế được \(a\) lít nước cam và \(b\) lít nước táo và dành được điểm thưởng cao nhất. Hiệu số \(a - b\) là
Quảng cáo
Trả lời:

Chọn C
Gọi \(x,\;y\) lần lượt là số lít nước cam và nước táo mà mỗi đội cần pha chế \(\left( {x \ge 0;\,\,y \ge 0} \right)\).
Để pha chế \(x\) lít nước cam cần \(30x\)g đường, \(x\) lít nước và \(x\)g hương liệu.
Để pha chế \(y\) lít nước táo cần \(10y\)g đường, \(y\) lít nước và \(4y\)g hương liệu.
Theo bài ra ta có hệ bất phương trình:
\(\left\{ \begin{array}{l}30x + 10y \le 210\\x + y \le 9\\x + 4y \le 24\\x \ge 0;\;y \ge 0\end{array} \right.\quad \left( * \right)\).
Số điểm đạt được khi pha \(x\) lít nước cam và \(y\) lít nước táo là \(M\left( {x,y} \right) = 60x + 80y\). Bài toán trở thành tìm \(x,\;y\) để \(M\left( {x,\,y} \right)\) đạt giá trị lớn nhất.
Ta biểu diễn miền nghiệm của hệ \(\left( * \right)\) trên mặt phẳng tọa độ như sau:
Miền nghiệm là ngũ giác \(ABCDE\).
Tọa độ các điểm: \(A\left( {4\,;\,5} \right)\), \(B\left( {6\,;\,3} \right)\), \(C\left( {7\,;\,0} \right)\), \(D\left( {0\,;\,0} \right)\), \(E\left( {0\,;\,6} \right)\).
\(M\left( {x,\,y} \right)\) sẽ đạt giá trị lớn nhất, giá trị nhỏ nhất tại các đỉnh của miền nghiệm nên thay tọa độ các điểm vào biểu thức \(M\left( {x,\,y} \right)\) ta được:
\(M\left( {4\,;\,5} \right) = 640\); \(M\left( {6\,;\,3} \right) = 600\), \(M\left( {7\,;\,0} \right) = 420\), \(M\left( {0\,;\,0} \right) = 0\), \(M\left( {0\,;\,6} \right) = 480\).
Vậy giá trị lớn nhất của \(M\left( {x\,;\,y} \right)\) bằng \(640\) khi \(x = 4;\;y = 5\) \( \Rightarrow a = 4;\;b = 5 \Rightarrow a - b = - 1\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Trong mặt phẳng \(Oxy\), cho tứ giác \(ABCD\) có \(A( - 3;0);B(0;2);C(3;1);D(3; - 2)\). Tìm tất cả các giá trị của \(m\) sao cho điểm \(M(m;m - 1)\) nằm trong hình tứ giác \(ABCD\) kể cả 4 cạnh.
Nhận thấy hình tứ giác \(ABCD\) tính cả 4 cạnh của nó là miền nghiệm của hệ bất phương trình gồm 4 bất phương trình có miền nghiệm là nửa mặt phẳng chứa điểm \(O(0;0)\) và lần lượt có các bờ là các đường thẳng \(AB,BC,CD\) và \(DA\).
Phương trình đường thẳng \(AB\):
\(\frac{{x + 3}}{{0 - ( - 3)}} = \frac{{y - 0}}{{2 - 0}} \Leftrightarrow 2x - 3y + 6 = 0.{\rm{ }}\)
Bất phương trình có miền nghiệm là là nửa mặt phẳng bờ \(AB\) (tính cả bờ \(AB\)) và chứa điểm \(O\) là \(2x - 3y + 6 \ge 0\).
Phương trình đường thẳng \(BC:\frac{{x - 0}}{{3 - 0}} = \frac{{y - 2}}{{1 - 2}} \Leftrightarrow x + 3y - 6 = 0\). Bất phương trình có miền nghiệm là là nửa mặt phẳng bờ \(BC\) (tính cả bờ \(BC\)) và chứa điểm \(O\) là \(x + 3y - 6 \le 0\).
Phương trình đường thẳng \(CD:x - 3 = 0\). Bất phương trình có miền nghiệm là là nửa mặt phẳng bờ \(CD\) (tính cả bờ \(CD\)) và chứa điểm \(O\) là \(x - 3 \le 0\).
Phương trình đường thẳng \(DA:\frac{{x + 3}}{{3 - ( - 3)}} = \frac{{y - 0}}{{ - 2 - 0}} \Leftrightarrow x + 3y + 3 = 0\). Bất phương trình có miền nghiệm là là nửa mặt phẳng bờ \(DA\) (tính cả bờ \(DA\) ) và chứa điểm \(O\) là \(x + 3y + 3 \ge 0\).
Hình tứ giác \(ABCD\) tính cả 4 cạnh của nó là miền nghiệm của hệ bất phương trình \(\left\{ {\begin{array}{*{20}{l}}{2x - 3y + 6 \ge 0}\\{x + 3y - 6 \le 0}\\{x - 3 \le 0}\\{x + 3y + 3 \ge 0}\end{array}} \right.(1)\)
Điểm \(M(m;m - 1)\) nằm trong hình tứ giác \(ABCD\) tính cả 4 cạnh của nó khi và chỉ khi \((m;m - 1)\) là một nghiệm của hệ \((1)\), tức là
\(\left\{ {\begin{array}{*{20}{l}}{2m - 3(m - 1) + 6 \ge 0}\\{m + 3(m - 1) - 6 \le 0}\\{m - 3 \le 0}\\{m + 3(m - 1) + 3 \ge 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{m \le 9}\\{m \le \frac{9}{4}}\\{m \le 3}\\{m \ge 0}\end{array} \Leftrightarrow 0 \le m \le \frac{9}{4}} \right.} \right.\)
Vậy các giá trị của \(m\) thỏa mãn là \(0 \le m \le \frac{9}{4}\).
Lời giải
Điều kiện: \(0 \le x \le 2;0 \le y \le 1,5\)
Khi đó số protein có được là \(800x + 600y\) và số lipit có được là \(200x + 400y\)
Vì gia đình đó cần ít nhất 1200 đơn vị protein và 800 đơn vị lipit trong thức ăn mỗi ngày nên điều kiện tương ứng là:
\(800x + 600y \ge 1200 \Leftrightarrow 4x + 3y \ge 6{\rm{ v\`a }}200x + 400y \ge 800 \Leftrightarrow x + 2y \ge 4\)
Ta có hệ bất phương trình sau:
\(\left\{ {\begin{array}{*{20}{l}}{0 \le x \le 2}\\{0 \le y \le 1,5}\\{4x + 3y \ge 6}\\{x + 2y \ge 4}\end{array}} \right.\)(*)
Miền nghiệm của hệ trên là miền ngũ giác \(ABCDE\) kể cả các cạnh của ngũ giác.
Chi phí để mua \(x\;kg\) thịt bò và \(y\;kg\) thịt lợn là \(T = 200x + 100y\) (nghìn đồng).
Bài toán trở thành tìm giá trị nhỏ nhất của \(T(x;y) = 200x + 100y\) trên miền nghiệm của hệ \((*)\).
Tìm tọa độ các điểm \(A,B,C,D,E\).
Tọa độ điểm \(A\) là nghiệm của hệ \(\left\{ {\begin{array}{*{20}{l}}{4x + 5y - 6 = 0}\\{y = \frac{3}{2}}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = \frac{3}{8}}\\{y = \frac{3}{2}}\end{array}} \right.} \right.\). Vậy \(A\left( {\frac{3}{8};\frac{3}{2}} \right)\).
Tọa độ điềm \(C\) là nghiệm của hệ \(\left\{ {\begin{array}{*{20}{l}}{x = 2}\\{y = 0}\end{array}} \right.\). Vậy \(C(2;0)\).
Tọa độ điểm \(D\) là nghiệm của hệ \(\left\{ {\begin{array}{*{20}{l}}{x = 2}\\{x + 2y - 4 = 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = 2}\\{y = 1}\end{array}} \right.} \right.\). Vậy \(D(2;1)\).
Tọa độ điểm \(E\) là nghiệm của hệ \(\left\{ {\begin{array}{*{20}{l}}{x + 2y - 4 = 0}\\{y = \frac{3}{2}}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = 1}\\{y = \frac{3}{2}}\end{array}} \right.} \right.\). Vậy \(E\left( {1;\frac{3}{2}} \right)\).
Ta thấy \(T(x;y) = 200x + 100y\) đạt giá trị nhỏ nhất chỉ có thể tại các điểm \(A,B,C,D,E\).
Tại \(A\left( {\frac{3}{8};\frac{3}{2}} \right)\) thì \(T = 200 \cdot \frac{3}{8} + 100 \cdot \frac{3}{2} = 225\) (nghìn đồng).
Tại \(B\left( {\frac{3}{2};0} \right)\) thì \(T = 200 \cdot \frac{3}{2} + 100 \cdot 0 = 300\) (nghìn đồng).
Tại \(C(2;0)\) thì \(T = 200.2 + 100.0 = 400\) (nghìn đồng).
Tại \(D(2;1)\) thì \(T = 200.2 + 100.1 = 500\) (nghìn đồng).
Tại \(E\left( {1;\frac{3}{2}} \right)\) thì \(T = 200.1 + 100 \cdot \frac{3}{2} = 350\) (nghìn đồng).
Như vậy để chi phí bỏ ra thấp nhất mà vẫn đảm bảo nhu cầu dinh dưỡng khi \(x = \frac{3}{8}\) và \(y = \frac{3}{2} \Rightarrow 4{x^2} + {y^2} = 4 \cdot {\left( {\frac{3}{8}} \right)^2} + {\left( {\frac{3}{2}} \right)^2} = \frac{{45}}{{16}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.