Câu hỏi:

10/10/2025 15 Lưu

Phần 2. Trắc nghiệm lựa chọn đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.

Một trò chơi chọn ô chữ đơn giản mà kết quả gồm một trong hai khả năng: Nếu người chơi chọn được chữ \(A\) thì người ấy được cộng 3 điểm, nếu người chơi chọn được chữ \(B\) thì người ấy bị trừ 1 điểm. Người chơi chỉ chiến thắng khi đạt được số điểm tối thiểu là 20. Gọi \(x,y\) theo thứ tự là số lần người chơi chọn được chữ \(A\) và chữ \(B\). Khi đó:

a) Tổng số điểm người chơi đạt được khi chọn chữ \(A\) là \(3x\), tổng số điểm người chơi bị trừ khi chọn chữ \(B\) là \(y\).

b) Bất phương trình bậc nhất hai ẩn \(x,y\) trong tình huống người chơi chiến thắng là

c) Người chơi chọn được chữ \(A\) 7 lần và chọn được chữ \(B\) 1 lần thì người đó vừa đủ điểm dành chiến thắng trò chơi.

d) Người chơi chọn được chữ \(A\) 8 lần và chọn được chữ \(B\) 3 lần thì người đó vừa đủ điểm dành chiến thắng trò chơi.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng

b) Sai

c) Đúng

d) Sai

 

a) Tổng số điểm người chơi đạt được khi chọn chữ \(A\) là \(3x\), tổng số điểm người chơi bị trừ khi chọn chữ \(B\) là \(y\).

b) Với \(x,y \in \mathbb{N}\), ta có bất phương trình: .

c) Thay cặp số \((7;1)\) vào bất phương trình  (đúng), suy ra \((7;1)\) là một nghiệm của \((*)\). Điều này cho thấy nếu người chơi chọn được chữ \(A\) 7 lần và chọn được chữ \(B\) 1 lần thì người đó vừa đủ điểm dành chiến thắng trò chơi.

d) Thay cặp số \((8;4)\) vào bất phương trình  (đúng), suy ra \((8;4)\) là một nghiệm của \((*)\). Điều này cho thấy nếu người chơi chọn được chữ \(A\) 8 lần và chọn được chữ \(B\) 4 lần thì người đó vừa đủ điểm dành chiến thắng trò chơi.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho các giá trị \[x,y\] thỏa mãn điều kiện \[\left\{ \begin{array}{l}x - y + 2 \ge 0\\2x - y - 1 \le 0\\3x - y - 2 \ge 0\end{array} \right.\]. Tìm giá trị lớn nhất của biểu thức \[T = 3x + 2y\]. (ảnh 1)

Miền nghiệm của hệ đã cho là miền trong tam giác \[ABC\](Kể cả đường biên) trong đó \[A\left( {1;1} \right)\], \[B\left( {2;4} \right)\],\[C\left( {3;5} \right)\].

Giá trị lớn nhất của \[T = 3x + 2y\] đạt được tại các đỉnh của tam giác \[ABC\].

Do \[{T_A} = T\left( {1;1} \right) = 3.1 + 2.1 = 5\], \[{T_B} = T\left( {2;4} \right) = 3.2 + 2.4 = 14\] và \[{T_C} = T\left( {3;5} \right) = 3.3 + 2.5 = 25\] nên giá trị lớn nhất của \[T = 3x + 2y\] là \[25\] đạt được khi \[x = 3\] và \[y = 5\].

Lời giải

Do \(x > 0,\frac{x}{2} + \frac{y}{3} - 1 \le 0\) nên ta có \(\frac{y}{3} < 1 \Leftrightarrow y < 3\)

Do \(y\) nguyên dương nên \(y \in \{ 1;2\} \).

Với \(y = 1\), ta có \(\left\{ {\begin{array}{*{20}{l}}{\frac{x}{2} + \frac{1}{3} - 1 \le 0}\\{x > 0}\end{array} \Leftrightarrow 0 < x \le \frac{4}{3} \Leftrightarrow x = 1} \right.\).

Với \(y = 2\), ta có \(\left\{ {\begin{array}{*{20}{l}}{\frac{x}{2} + \frac{2}{3} - 1 \le 0}\\{x > 0}\end{array} \Leftrightarrow 0 < x \le \frac{2}{3} \Leftrightarrow x \in \emptyset } \right.\).

Vậy bất phương trình \(\frac{x}{2} + \frac{y}{3} - 1 \le 0\) có nghiệm nguyên dương là \((1;1)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\left( {2\,;\,\,3} \right)\).                         
B. \(\left( { - 2\,;\,\,1} \right)\).        
C. \(\left( {2\,;\,\, - 1} \right)\).                         
D. \(\left( {0\,;\,\,0} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP