Xét tính đúng, sai của các mệnh đề sau:
a) \(2x - 3y + 4 \le 0\) là bất phương trình bậc nhất hai ẩn.
b) \(6{x^2} + 2y - 4 < 0\)là bất phương trình bậc nhất hai ẩn.
c) \(4x + 7 \ge 0\) là bất phương trình bậc nhất hai ẩn.
d) \(\frac{2}{3}x + \frac{1}{7}y - 4 > 0\) không là bất phương trình bậc nhất hai ẩn.
Xét tính đúng, sai của các mệnh đề sau:
a) \(2x - 3y + 4 \le 0\) là bất phương trình bậc nhất hai ẩn.
b) \(6{x^2} + 2y - 4 < 0\)là bất phương trình bậc nhất hai ẩn.
c) \(4x + 7 \ge 0\) là bất phương trình bậc nhất hai ẩn.
d) \(\frac{2}{3}x + \frac{1}{7}y - 4 > 0\) không là bất phương trình bậc nhất hai ẩn.
Câu hỏi trong đề: Đề kiểm tra Bài tập cuối chương II (có lời giải) !!
Quảng cáo
Trả lời:
|
a) Đúng |
b) Sai |
c) Đúng |
d) Sai |
Các bất phương trình a), c), d) là các bất phương trình bậc nhất hai ẩn. Bất phương trình b) không là bất phương trình bậc nhất hai ẩn vì có chứa \({x^2}\).
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Do \(x > 0,\frac{x}{2} + \frac{y}{3} - 1 \le 0\) nên ta có \(\frac{y}{3} < 1 \Leftrightarrow y < 3\)
Do \(y\) nguyên dương nên \(y \in \{ 1;2\} \).
Với \(y = 1\), ta có \(\left\{ {\begin{array}{*{20}{l}}{\frac{x}{2} + \frac{1}{3} - 1 \le 0}\\{x > 0}\end{array} \Leftrightarrow 0 < x \le \frac{4}{3} \Leftrightarrow x = 1} \right.\).
Với \(y = 2\), ta có \(\left\{ {\begin{array}{*{20}{l}}{\frac{x}{2} + \frac{2}{3} - 1 \le 0}\\{x > 0}\end{array} \Leftrightarrow 0 < x \le \frac{2}{3} \Leftrightarrow x \in \emptyset } \right.\).
Vậy bất phương trình \(\frac{x}{2} + \frac{y}{3} - 1 \le 0\) có nghiệm nguyên dương là \((1;1)\).
Lời giải
Đường thẳng \(AB:\frac{{x - 0}}{{ - 1 - 0}} = \frac{{y - 3}}{{2 - 3}} \Leftrightarrow x - y + 3 = 0\).
Đường thẳng \(AC:\frac{{x - 0}}{{2 - 0}} = \frac{{y - 3}}{{1 - 3}} \Leftrightarrow x + y - 3 = 0\).
Đường thẳng \(BC:\frac{{x - 2}}{{2 - ( - 1)}} = \frac{{y - 1}}{{1 - 2}} \Leftrightarrow x + 3y - 5 = 0\).
Điều kiện cần và đủ để điểm \(M\) nằm bên trong tam giác \(ABC\) là điểm \(M\) cùng với mỗi đỉnh \(A,B,C\) lần lượt cùng phía với nhau đối với cạnh \(AB,AC,BC\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}\begin{array}{l}(1 \cdot 0 + 3 \cdot 3 - 5) \cdot (1 \cdot m + 3 \cdot \frac{{2m - 1}}{2} - 5) > 0\\(1 \cdot ( - 1) + 1 \cdot 2 - 3) \cdot (1 \cdot m + 1 \cdot \frac{{2m - 1}}{2} - 3) > 0\\(1.2 - 1.1 + 3) \cdot (1 \cdot m - 1 \cdot \frac{{2m - 1}}{2} + 3) > 0\end{array}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}\begin{array}{l}m > \frac{{13}}{8}\\m < \frac{7}{4}\\14 > 0(tm)\end{array}\end{array} \Leftrightarrow \frac{{13}}{8} < m < \frac{7}{4}} \right.} \right.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. H1
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \(\left( { - 2\,;\,2} \right) \in S\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
