Biểu thức \(L = y - x\), với \(x\) và \(y\) thỏa mãn hệ bất phương trình \[\left\{ \begin{array}{l}2x + 3y - 6 \le 0\\x \ge 0\\2x - 3y - 1 \le 0\end{array} \right.\], đạt giá trị lớn nhất là \(a\) và đạt giá trị nhỏ nhất là \(b\).
Câu hỏi trong đề: Đề kiểm tra Bài tập cuối chương II (có lời giải) !!
Quảng cáo
Trả lời:
Trước hết, ta vẽ ba đường thẳng:
\(\left( {{d_1}} \right):2x + 3y - 6 = 0\)
\(\left( {{d_2}} \right):x = 0\)
\(\left( {{d_3}} \right):2x - 3y - 1 = 0\)
![Biểu thức \(L = y - x\), với \(x\) và \(y\) thỏa mãn hệ bất phương trình \[\left\{ \begin{array}{l}2x + 3y - 6 \le 0\\x \ge 0\\2x - 3y - 1 \le 0\end{array} \right.\], đạt giá trị lớn nhất là \(a\) và đạt giá trị nhỏ nhất là \(b\). (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/10/4-1760055872.png)
Ta thấy \(\left( {0\,\,;\,\,0} \right)\) là nghiệm của cả ba bất phương trình. Điều đó có nghĩa gốc tọa độ thuộc cả ba miền nghiệm của cả ba bất phương trình. Sau khi gạch bỏ các miền không thích hợp, miền không bị gạch là miền nghiệm của hệ (kể cả biên).
Miền nghiệm là hình tam giác \(ABC\) (kể cả biên), với \(A\left( {0\,\,;\,\,2} \right),\)\(B\left( {\frac{7}{4}\,\,;\,\,\frac{5}{6}} \right),\)\(C\left( {0\,\,;\,\, - \frac{1}{3}} \right).\)
Vậy ta có \(a = 2 - 0 = 2,\)\(b = \frac{5}{6} - \frac{7}{4} = - \frac{{11}}{{12}}.\)
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Do \(x > 0,\frac{x}{2} + \frac{y}{3} - 1 \le 0\) nên ta có \(\frac{y}{3} < 1 \Leftrightarrow y < 3\)
Do \(y\) nguyên dương nên \(y \in \{ 1;2\} \).
Với \(y = 1\), ta có \(\left\{ {\begin{array}{*{20}{l}}{\frac{x}{2} + \frac{1}{3} - 1 \le 0}\\{x > 0}\end{array} \Leftrightarrow 0 < x \le \frac{4}{3} \Leftrightarrow x = 1} \right.\).
Với \(y = 2\), ta có \(\left\{ {\begin{array}{*{20}{l}}{\frac{x}{2} + \frac{2}{3} - 1 \le 0}\\{x > 0}\end{array} \Leftrightarrow 0 < x \le \frac{2}{3} \Leftrightarrow x \in \emptyset } \right.\).
Vậy bất phương trình \(\frac{x}{2} + \frac{y}{3} - 1 \le 0\) có nghiệm nguyên dương là \((1;1)\).
Lời giải
Đường thẳng \(AB:\frac{{x - 0}}{{ - 1 - 0}} = \frac{{y - 3}}{{2 - 3}} \Leftrightarrow x - y + 3 = 0\).
Đường thẳng \(AC:\frac{{x - 0}}{{2 - 0}} = \frac{{y - 3}}{{1 - 3}} \Leftrightarrow x + y - 3 = 0\).
Đường thẳng \(BC:\frac{{x - 2}}{{2 - ( - 1)}} = \frac{{y - 1}}{{1 - 2}} \Leftrightarrow x + 3y - 5 = 0\).
Điều kiện cần và đủ để điểm \(M\) nằm bên trong tam giác \(ABC\) là điểm \(M\) cùng với mỗi đỉnh \(A,B,C\) lần lượt cùng phía với nhau đối với cạnh \(AB,AC,BC\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}\begin{array}{l}(1 \cdot 0 + 3 \cdot 3 - 5) \cdot (1 \cdot m + 3 \cdot \frac{{2m - 1}}{2} - 5) > 0\\(1 \cdot ( - 1) + 1 \cdot 2 - 3) \cdot (1 \cdot m + 1 \cdot \frac{{2m - 1}}{2} - 3) > 0\\(1.2 - 1.1 + 3) \cdot (1 \cdot m - 1 \cdot \frac{{2m - 1}}{2} + 3) > 0\end{array}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}\begin{array}{l}m > \frac{{13}}{8}\\m < \frac{7}{4}\\14 > 0(tm)\end{array}\end{array} \Leftrightarrow \frac{{13}}{8} < m < \frac{7}{4}} \right.} \right.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. H1
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \(\left( { - 2\,;\,2} \right) \in S\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
