Câu hỏi:

10/10/2025 711 Lưu

Cho hệ bất phương trình \(\left\{ \begin{array}{l}2x + y > 0\\x + 5y - 1 < 0\end{array} \right.\) có tập nghiệm là \(S\). Điểm nào sau đây thuộc tập S .                 

A. \(\left( { - 1; - 1} \right) \in S\)                
B. \(\left( {2;5} \right) \in S\).   
C. \(\left( {3; - 1} \right) \in S\)                                   
D. \(\left( { - 1;\frac{2}{5}} \right) \in S\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn C

Cách 1:

Ta có biểu diễn miền nghiệm của hệ

0\end{array} \right.\) thỏa mãn vậy chọn C (ảnh 1)

Từ biểu diễn miền nghiệm của hệ ta suy ra Chọn C

Cách 2:

Ta thay lần lượt giá trị của x và y vào hệ để kiểm tra:

\(x = 3;y =  - 1\)thì\(\left\{ \begin{array}{l}2x + y > 0\\x + 5y - 1 < 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}2x + y = 5 > 0\\x + 5y - 1 =  - 2 < 0\end{array} \right.\) thỏa mãn vậy chọn C

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Điều kiện: \(0 \le x \le 2;0 \le y \le 1,5\)

Khi đó số protein có được là \(800x + 600y\) và số lipit có được là \(200x + 400y\)

Vì gia đình đó cần ít nhất 1200 đơn vị protein và 800 đơn vị lipit trong thức ăn mỗi ngày nên điều kiện tương ứng là:

\(800x + 600y \ge 1200 \Leftrightarrow 4x + 3y \ge 6{\rm{ v\`a  }}200x + 400y \ge 800 \Leftrightarrow x + 2y \ge 4\)

Ta có hệ bất phương trình sau:

\(\left\{ {\begin{array}{*{20}{l}}{0 \le x \le 2}\\{0 \le y \le 1,5}\\{4x + 3y \ge 6}\\{x + 2y \ge 4}\end{array}} \right.\)(*)

Một gia đình cần ít nhất 1200 đơn vị protein và 800 đơn vị lipit trong thức ăn mỗi ngày. Mỗi kilogam thịt bò chứa 800 đơn vị protein và 200 đơn vị lipit. (ảnh 1)

Miền nghiệm của hệ trên là miền ngũ giác \(ABCDE\) kể cả các cạnh của ngũ giác.

Chi phí để mua \(x\;kg\) thịt bò và \(y\;kg\) thịt lợn là \(T = 200x + 100y\) (nghìn đồng).

Bài toán trở thành tìm giá trị nhỏ nhất của \(T(x;y) = 200x + 100y\) trên miền nghiệm của hệ \((*)\).

Tìm tọa độ các điểm \(A,B,C,D,E\).

Tọa độ điểm \(A\) là nghiệm của hệ \(\left\{ {\begin{array}{*{20}{l}}{4x + 5y - 6 = 0}\\{y = \frac{3}{2}}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = \frac{3}{8}}\\{y = \frac{3}{2}}\end{array}} \right.} \right.\). Vậy \(A\left( {\frac{3}{8};\frac{3}{2}} \right)\).

Tọa độ điềm \(C\) là nghiệm của hệ \(\left\{ {\begin{array}{*{20}{l}}{x = 2}\\{y = 0}\end{array}} \right.\). Vậy \(C(2;0)\).

Tọa độ điểm \(D\) là nghiệm của hệ \(\left\{ {\begin{array}{*{20}{l}}{x = 2}\\{x + 2y - 4 = 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = 2}\\{y = 1}\end{array}} \right.} \right.\). Vậy \(D(2;1)\).

Tọa độ điểm \(E\) là nghiệm của hệ \(\left\{ {\begin{array}{*{20}{l}}{x + 2y - 4 = 0}\\{y = \frac{3}{2}}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = 1}\\{y = \frac{3}{2}}\end{array}} \right.} \right.\). Vậy \(E\left( {1;\frac{3}{2}} \right)\).

Ta thấy \(T(x;y) = 200x + 100y\) đạt giá trị nhỏ nhất chỉ có thể tại các điểm \(A,B,C,D,E\).

Tại \(A\left( {\frac{3}{8};\frac{3}{2}} \right)\) thì \(T = 200 \cdot \frac{3}{8} + 100 \cdot \frac{3}{2} = 225\) (nghìn đồng).

Tại \(B\left( {\frac{3}{2};0} \right)\) thì \(T = 200 \cdot \frac{3}{2} + 100 \cdot 0 = 300\) (nghìn đồng).

Tại \(C(2;0)\) thì \(T = 200.2 + 100.0 = 400\) (nghìn đồng).

Tại \(D(2;1)\) thì \(T = 200.2 + 100.1 = 500\) (nghìn đồng).

Tại \(E\left( {1;\frac{3}{2}} \right)\) thì \(T = 200.1 + 100 \cdot \frac{3}{2} = 350\) (nghìn đồng).

Như vậy để chi phí bỏ ra thấp nhất mà vẫn đảm bảo nhu cầu dinh dưỡng khi \(x = \frac{3}{8}\) và \(y = \frac{3}{2} \Rightarrow 4{x^2} + {y^2} = 4 \cdot {\left( {\frac{3}{8}} \right)^2} + {\left( {\frac{3}{2}} \right)^2} = \frac{{45}}{{16}}\).

Lời giải

Gọi \(x,y\) (tấn) lần lượt là số tấn nguyên liệu loại \(I\) và loại \(II\) cần sử dụng.

Điều kiện \(0 \le x \le 9;0 \le y \le 7\).

Khi đó số kg chất \(A\) thu được là: \(25x + 20y\)

Số kg chất \(B\) thu được là: \(1,2x + 2y\)

Ta có hệ bất phương trình

\(\left\{ {\begin{array}{*{20}{l}}{0 \le x \le 9}\\{0 \le y \le 7}\\{25x + 20y \ge 160}\\{1,2x + 2y \ge 12}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{0 \le x \le 9}\\{0 \le y \le 7}\\{5x + 4y \ge 32}\\{3x + 5y \ge 30}\end{array}} \right.} \right.\)

Chi phí mua nguyên liệu là:

\(T(x;y) = 6x + 4y\) (triệu đồng).

Bài toán trở thành tìm giá trị nhỏ nhất của \(T(x;y) = 5x + 4y\) trên miền nghiệm của hệ (*).

Miền nghiệm của hệ bất phương trình là miền được tô màu như hình vẽ.

Câu 4

A. \(\left\{ \begin{array}{c}2x + y > 1\\ - x + 2y < 2\\3x - y > 6\end{array} \right.\).                                                               
B. \(\left\{ \begin{array}{c}2x + y < 1\\ - x + 2y < 2\\3x - y > - 6\end{array} \right.\).                 
C. \(\left\{ \begin{array}{c}2x + y < 1\\ - x + 2y > 2\\3x - y > - 6\end{array} \right.\).                                                               
D. \(\left\{ \begin{array}{c}2x + y > 1\\x - 2y < 2\\3x - y > 6\end{array} \right.\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \( - 12\).                    
B. \[ - 10\].                  
C. \[ - 8\].                                  
D. \[ - 6\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP