Câu hỏi:

10/10/2025 43 Lưu

Với giá trị nào của \[m\] thì bất phương trình \[m\left( {2x + 1} \right) < 8\] là bất phương trình bậc nhất một ẩn?

A. \[m \ne 1\].   

B. \[m \ne  - \frac{1}{3}\].  
C. \[m \ne 0\].  
D. \[m \ne 8\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn C

Ta có \[m\left( {2x + 1} \right) < 8\] được biến đổi thành \[2mx + m - 8 < 0\].

Vậy để bất phương trình \[m\left( {2x + 1} \right) < 8\] là bất phương trình bậc nhất một ẩn thì \[2mx + m - 8 < 0\]là bất phương trình bậc nhất một ẩn.

Theo định nghĩa bất phương trình bậc nhất một ẩn thì \[a \ne 0\] hay \[2m \ne 0\] nên \[m \ne 0\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(x\) (triệu đồng) là số tiền ông Kiên cần gửi tiết kiệm \[\left( {x > 0} \right)\].

Số tiền lãi ông Kiên thu được trong một năm là \(0,068 \cdot x\) (triệu đồng).

Để có lãi suất ít nhất là \(70\) triệu đồng một năm thì ta có:

\(0,068x \ge 70\) nên \(x \ge \frac{{70}}{{0,068}} \approx 1029,417...\).

So với điều kiện \[x > 0\] và số tiền ông Kiên cần gửi tiết kiệm ít nhất nên \(x = 1030\) triệu đồng.

Vậy ông Kiên cần gửi ngân hàng ít nhất là \(1030\) triệu đồng.

Đáp án: 1030.

Lời giải

Chọn C

Gọi \(x\) (triệu đồng) là số tiền gửi tiết kiệm \(\left( {x > 0} \right)\).

Khi đó số tiền lãi một tháng là \(0,4\% .x = 0,004x\) (triệu đồng).

Để số tiền lãi hàng tháng ít nhất là \(3\) triệu đồng thì ta phải có:

\[0,004x \ge 3\] hay \[x \ge 750\].

Vậy số tiền tiết kiệm ít nhất là \(750\) triệu đồng để có số tiền lãi hàng tháng ít nhất là \(3\) triệu đồng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP