Câu hỏi:

10/10/2025 64 Lưu

Với giá trị nào của \[m\] thì bất phương trình \[m\left( {2x + 1} \right) < 8\] là bất phương trình bậc nhất một ẩn?

A. \[m \ne 1\].   

B. \[m \ne  - \frac{1}{3}\].  
C. \[m \ne 0\].  
D. \[m \ne 8\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn C

Ta có \[m\left( {2x + 1} \right) < 8\] được biến đổi thành \[2mx + m - 8 < 0\].

Vậy để bất phương trình \[m\left( {2x + 1} \right) < 8\] là bất phương trình bậc nhất một ẩn thì \[2mx + m - 8 < 0\]là bất phương trình bậc nhất một ẩn.

Theo định nghĩa bất phương trình bậc nhất một ẩn thì \[a \ne 0\] hay \[2m \ne 0\] nên \[m \ne 0\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(x\) (triệu đồng) là số tiền ông Kiên cần gửi tiết kiệm \[\left( {x > 0} \right)\].

Số tiền lãi ông Kiên thu được trong một năm là \(0,068 \cdot x\) (triệu đồng).

Để có lãi suất ít nhất là \(70\) triệu đồng một năm thì ta có:

\(0,068x \ge 70\) nên \(x \ge \frac{{70}}{{0,068}} \approx 1029,417...\).

So với điều kiện \[x > 0\] và số tiền ông Kiên cần gửi tiết kiệm ít nhất nên \(x = 1030\) triệu đồng.

Vậy ông Kiên cần gửi ngân hàng ít nhất là \(1030\) triệu đồng.

Đáp án: 1030.

Lời giải

Gọi số chuyến ít nhất cần chở là \(x\) (chuyến) \(\left( {x \in {\mathbb{N}^*}} \right)\)\(x\)

Theo bài ra ta có: \(5x \ge 37\) nên \(x \ge 7,4\)

Mà \(x\) nhỏ nhất, \(x \in {\mathbb{N}^*}\) nên \(x = 8\).

Vậy xe tải cần chở ít nhất \(8\) chuyến.

Đáp án: 8.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP