Câu hỏi:

10/10/2025 40 Lưu

Cho bất phương trình \(3x - \left( {6 + 2x} \right) \le 5\left( {x + 4} \right)\). Biết nghiệm nhỏ

nhất của bất phương trình có dạng \(\frac{a}{b}\) (với \(\frac{a}{b}\) là phân số tối giản có mẫu

số dương). Tính giá trị biểu thức \(T = a + b.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Giải bất phương trình:

\(3x - \left( {6 + 2x} \right) \le 5\left( {x + 4} \right)\)

\(3x - 6 - 2x \le 5x + 20\)

\(x - 6 \le 5x + 20\)

\(x - 5x \le 20 + 6\)

\( - 4x \le 26\)

\(x \ge \frac{{26}}{{ - 4}}\)

\(x \ge  - \frac{{13}}{2}.\)

Như vậy, nghiệm nhỏ nhất của bất phương trình là \(x =  - \frac{{13}}{2} = \frac{{ - 13}}{2}.\)

Theo bài, nghiệm nhỏ nhất của bất phương trình có dạng \(\frac{a}{b}\) (với \(\frac{a}{b}\) là phân số tối giản có mẫu số dương, nên \(a =  - 13\) và \(b = 2.\)

Do đó, giá trị biểu thức \(T = a + b =  - 13 + 2 =  - 11.\)

Đáp án: −11.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(x\) (triệu đồng) là số tiền ông Kiên cần gửi tiết kiệm \[\left( {x > 0} \right)\].

Số tiền lãi ông Kiên thu được trong một năm là \(0,068 \cdot x\) (triệu đồng).

Để có lãi suất ít nhất là \(70\) triệu đồng một năm thì ta có:

\(0,068x \ge 70\) nên \(x \ge \frac{{70}}{{0,068}} \approx 1029,417...\).

So với điều kiện \[x > 0\] và số tiền ông Kiên cần gửi tiết kiệm ít nhất nên \(x = 1030\) triệu đồng.

Vậy ông Kiên cần gửi ngân hàng ít nhất là \(1030\) triệu đồng.

Đáp án: 1030.

Lời giải

Gọi số chuyến ít nhất cần chở là \(x\) (chuyến) \(\left( {x \in {\mathbb{N}^*}} \right)\)\(x\)

Theo bài ra ta có: \(5x \ge 37\) nên \(x \ge 7,4\)

Mà \(x\) nhỏ nhất, \(x \in {\mathbb{N}^*}\) nên \(x = 8\).

Vậy xe tải cần chở ít nhất \(8\) chuyến.

Đáp án: 8.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP