Câu hỏi:

10/10/2025 11 Lưu

Phần 3. Trắc nghiệm trả lời ngắn

Trong mỗi câu hỏi, thí sinh viết câu trả lời/ đáp án vào bài làm mà không cần trình bày lời giải chi tiết.

Một tam giác có độ dài các cạnh là \(1,\,\,2,\,\,x\) \((x\) là số nguyên). Tìm \(x.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Theo bất đẳng thức trong tam giác, ta có:

\(2 - 1 < x < 2 + 1\) hay \(1 < x < 3\).

Mà \(x\) là số nguyên nên \(x = 3\).

Đáp án: 3.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(x\) (triệu đồng) là số tiền ông Kiên cần gửi tiết kiệm \[\left( {x > 0} \right)\].

Số tiền lãi ông Kiên thu được trong một năm là \(0,068 \cdot x\) (triệu đồng).

Để có lãi suất ít nhất là \(70\) triệu đồng một năm thì ta có:

\(0,068x \ge 70\) nên \(x \ge \frac{{70}}{{0,068}} \approx 1029,417...\).

So với điều kiện \[x > 0\] và số tiền ông Kiên cần gửi tiết kiệm ít nhất nên \(x = 1030\) triệu đồng.

Vậy ông Kiên cần gửi ngân hàng ít nhất là \(1030\) triệu đồng.

Đáp án: 1030.

Lời giải

a) Đúng. Do mỗi loại bạn An mua ít nhất 6 quả và giá của mỗi quả táo cao hơn mỗi quả lê, nên bạn An chỉ nên mua 6 quả táo để số quả lê mua được là nhiều nhất.

b) Đúng. Số quả lê bạn An đã mua là: \(x - 6\) (quả).

Số tiền bạn An dùng để mua 6 quả táo là: \(6 \cdot 22 = 132\) (nghìn đồng).

Số tiền bạn An dùng để mua \(x - 6\) quả lê là: \(10\left( {x - 6} \right)\) (nghìn đồng).

c) Đúng. Bạn An có 300 nghìn đồng để mua táo và lê nên ta có: \(132 + 10\left( {x - 6} \right) \le 300\)

d) Sai. Giải phương trình \(132 + 10\left( {x - 6} \right) \le 300\)

\(132 + 10x - 60 \le 300\)

\(10x \le 228\)

\(x \le 22,8\).

Mà tổng số hai loại quả mua được là nhiều nhất nên \(x\) là số nguyên lớn nhất, do đó \(x = 22.\)

Vậy bạn An có thể mua được nhiều nhất 22 quả táo và lê.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP