Cho \(\Delta ABC\)có \(a = 6,b = 8,c = 10.\) Diện tích \(S\) của tam giác trên là:
Quảng cáo
Trả lời:
Ta có: Nửa chu vi \(\Delta ABC\): \(p = \frac{{a + b + c}}{2}\).
Áp dụng công thức Hê-rông: \(S = \sqrt {p(p - a)(p - b)(p - c)} = \sqrt {12(12 - 6)(12 - 8)(12 - 10)} = 24\).
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Kẻ \(AK \bot BN;{A^\prime }H \bot BN\).

Gọi \({A^\prime }\) đối xứng với \(A\) qua \(MN,D\) là trung của \(NB\).
\(T = CA + CB = C{A^\prime } + CB \ge {A^\prime }B\) (không đổi). Đẳng thức xảy ra khi \(\{ C\} = MN \cap {A^\prime }B\).
\(MN = AK = {A^\prime }H = \sqrt {A{B^2} - K{B^2}} = \sqrt {{{(3\sqrt {37} )}^2} - {3^2}} = 18\;km.\)
Vậy \({A^\prime }B = \sqrt {{A^\prime }{H^2} + H{B^2}} = \sqrt {{{18}^2} + {9^2}} = 9\sqrt 5 \simeq 20,12\;km\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
