Câu hỏi:

10/10/2025 6 Lưu

Trong mặt phẳng, cho tam giác \[ABC\]\[AC = 4{\rm{ cm}}\], góc \(\widehat A = 60^\circ \), \(\widehat B = 45^\circ \). Độ dài cạnh \[BC\]

A. \(2\sqrt 6 \).           
B. \(2 + 2\sqrt 3 \).  
C. \(2\sqrt 3 - 2\).                           
D. \(\sqrt 6 \).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn A

Ta có \(\frac{{BC}}{{\sin A}} = \frac{{AC}}{{\sin B}}\)\( \Leftrightarrow BC = \frac{{4.\frac{{\sqrt 3 }}{2}}}{{\frac{{\sqrt 2 }}{2}}} = 2\sqrt 6 \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Áp dụng định lí côsin cho tam giác \(ABC\), ta có: \(\cos A = \frac{{A{B^2} + A{C^2} - B{C^2}}}{{2AB \cdot AC}} = \frac{{{4^2} + {5^2} - {6^2}}}{{2.4.5}} = \frac{1}{8}\). Mà A^<180° nên \(\sin A = \sqrt {1 - {{\cos }^2}A}  = \sqrt {1 - \frac{1}{{64}}}  = \frac{{3\sqrt 7 }}{8}\)

Áp dụng định lí sin, ta có: \(\frac{{BC}}{{\sin A}} = 2R \Rightarrow R = \frac{{BC}}{{2\sin A}} = \frac{6}{{2 \cdot \frac{{3\sqrt 7 }}{8}}} \approx 3(\;cm)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\frac{1}{2}\).     
B. \(\frac{{\sqrt 3 }}{2}\).                      
C. \(1\).                    
D. \( - 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\sqrt {56} \).       
B. \(\sqrt {48} \).     
C. \(6\).                           
D. \(8\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP