Để đo khoảng cách từ vị trí \(A\) trên bờ sông đến vị trí \(B\) của con tàu bị mắc cạn gần một cù lao giữa sông, bạn Minh đi dọc bờ sông từ vị trí \(A\) đến vị trí \(C\) cách \(A\) một khoảng bằng \(50\;m\) và đo các góc . (Hình). Tính khoảng cách \(AB\) theo đơn vị mét (làm tròn kết quả đến hàng đơn vị)

Để đo khoảng cách từ vị trí \(A\) trên bờ sông đến vị trí \(B\) của con tàu bị mắc cạn gần một cù lao giữa sông, bạn Minh đi dọc bờ sông từ vị trí \(A\) đến vị trí \(C\) cách \(A\) một khoảng bằng \(50\;m\) và đo các góc . (Hình). Tính khoảng cách \(AB\) theo đơn vị mét (làm tròn kết quả đến hàng đơn vị)

Câu hỏi trong đề: Đề kiểm tra Bài tập cuối chương III (có lời giải) !!
Quảng cáo
Trả lời:
Xét tam giác \(ABC\), ta có:
Áp dụng định lí sin, ta có:
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Áp dụng định lí côsin cho tam giác \(ABC\), ta có: \(\cos A = \frac{{A{B^2} + A{C^2} - B{C^2}}}{{2AB \cdot AC}} = \frac{{{4^2} + {5^2} - {6^2}}}{{2.4.5}} = \frac{1}{8}\). Mà nên \(\sin A = \sqrt {1 - {{\cos }^2}A} = \sqrt {1 - \frac{1}{{64}}} = \frac{{3\sqrt 7 }}{8}\)
Áp dụng định lí sin, ta có: \(\frac{{BC}}{{\sin A}} = 2R \Rightarrow R = \frac{{BC}}{{2\sin A}} = \frac{6}{{2 \cdot \frac{{3\sqrt 7 }}{8}}} \approx 3(\;cm)\).
Lời giải
|
a) Đúng |
b) Sai |
c) Sai |
d) Đúng |
Theo định lí cosin, ta có: \({c^2} = {a^2} + {b^2} - 2ab\cos C\)
\( = {(49,4)^2} + {(26,4)^2} - 2.49,4.26,4 \cdot \cos \left( {{{47}^0}{{20}^\prime }} \right) \approx 1369,66.{\rm{ }}\)
Suy ra: \(c \approx 37\;cm\).
Ta có: \(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}} \approx \frac{{{{\left( {26,4} \right)}^2} + 1369,66 - {{\left( {49,4} \right)}^2}}}{{2.26,4.37}} \approx - 0,191 \Rightarrow \widehat A \approx 101^\circ \)
Ta có: \(\widehat B = 180^\circ - \left( {\widehat A + \widehat C} \right) \approx 31^\circ 40'\)
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

