Thành phố Hải Đông dự định xây dựng một trạm nước sạch để cung cấp cho hai khu dân cư \(A\) và \(B\). Trạm nước sạch đặt tại vị trí \(C\) trên bờ sông. Biết \(AB = 3\sqrt {17} \;km\), khoảng cách từ \(A\) và \(B\) đến bờ sông lần lượt là \(AM = 3\;km,BN = 6\;km\) (hình vẽ). Gọi \(T\) là tổng độ dài đường ống từ trạm nước đến \(A\) và \(B\). Tìm giá trị nhỏ nhất của \(T\).

Thành phố Hải Đông dự định xây dựng một trạm nước sạch để cung cấp cho hai khu dân cư \(A\) và \(B\). Trạm nước sạch đặt tại vị trí \(C\) trên bờ sông. Biết \(AB = 3\sqrt {17} \;km\), khoảng cách từ \(A\) và \(B\) đến bờ sông lần lượt là \(AM = 3\;km,BN = 6\;km\) (hình vẽ). Gọi \(T\) là tổng độ dài đường ống từ trạm nước đến \(A\) và \(B\). Tìm giá trị nhỏ nhất của \(T\).

Câu hỏi trong đề: Đề kiểm tra Bài tập cuối chương III (có lời giải) !!
Quảng cáo
Trả lời:
Kẻ \(AK \bot BN;{A^\prime }H \bot BN\).

Gọi \({A^\prime }\) đối xứng với \(A\) qua \(MN,D\) là trung của \(NB\).
\(T = CA + CB = C{A^\prime } + CB \ge {A^\prime }B\) (không đổi). Đẳng thức xảy ra khi \(\{ C\} = MN \cap {A^\prime }B\).
\(MN = AK = {A^\prime }H = \sqrt {A{B^2} - K{B^2}} = \sqrt {{{(3\sqrt {37} )}^2} - {3^2}} = 18\;km.\)
Vậy \({A^\prime }B = \sqrt {{A^\prime }{H^2} + H{B^2}} = \sqrt {{{18}^2} + {9^2}} = 9\sqrt 5 \simeq 20,12\;km\).
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Xét tam giác \(ABC\), ta có:
Áp dụng định lí sin, ta có:
Lời giải
Áp dụng định lí côsin cho tam giác \(ABC\), ta có: \(\cos A = \frac{{A{B^2} + A{C^2} - B{C^2}}}{{2AB \cdot AC}} = \frac{{{4^2} + {5^2} - {6^2}}}{{2.4.5}} = \frac{1}{8}\). Mà nên \(\sin A = \sqrt {1 - {{\cos }^2}A} = \sqrt {1 - \frac{1}{{64}}} = \frac{{3\sqrt 7 }}{8}\)
Áp dụng định lí sin, ta có: \(\frac{{BC}}{{\sin A}} = 2R \Rightarrow R = \frac{{BC}}{{2\sin A}} = \frac{6}{{2 \cdot \frac{{3\sqrt 7 }}{8}}} \approx 3(\;cm)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

