Câu hỏi:

10/10/2025 10 Lưu

Cho tam giác \(ABC\) biết a=3 cm,b=4 cm,C^=30°. Khi đó:

a) \({c^2} = {a^2} + {b^2} - 2ab\cos C\)

b) \(c \approx 3,05(\;cm)\)

c) \(\cos A \approx 0,68\)

d) A^77,2°

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng

b) Sai

c) Đúng

d) Sai

Áp dụng định lí cosin trong tam giác, ta có: c2=a2+b22abcosC hay c2=32+42234cos30°=25123. Do đó, \(c \approx 2,05(\;cm)\).

Ta có \({a^2} = {b^2} + {c^2} - 2bc\cos A \Rightarrow \cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}} = \frac{{{4^2} + {{(25 - 12\sqrt 3 )}^2} - {3^2}}}{{2 \cdot 4 \cdot \sqrt {25 - 12\sqrt 3 } }} \approx 0,68\).

Suy ra A^47,2°. Do đó, B^=180°A^C^=180°47,2°30°=102,8°

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng

b) Đúng

c) Sai

d) Sai

a) Áp dụng định lí côsin trong tam giác \(ABC\), ta có: \(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\).

b) Góc \(A\) vuông khi và chỉ khi \({a^2} = {b^2} + {c^2}\);

c) Góc \(A\) nhọn khi và chỉ khi \(\cos A > 0\) hay \({b^2} + {c^2} - {a^2} > 0 \Leftrightarrow {a^2} < {b^2} + {c^2}\).

d) Góc \(A\) tù khi và chỉ khi \(\cos A < 0\) hay \({b^2} + {c^2} - {a^2} < 0 \Leftrightarrow {a^2} > {b^2} + {c^2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP