Câu hỏi:

10/10/2025 360 Lưu

Cho tam giác \(ABC\) biết a=3 cm,b=4 cm,C^=30°. Khi đó:

a) \({c^2} = {a^2} + {b^2} - 2ab\cos C\)

b) \(c \approx 3,05(\;cm)\)

c) \(\cos A \approx 0,68\)

d) A^77,2°

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng

b) Sai

c) Đúng

d) Sai

Áp dụng định lí cosin trong tam giác, ta có: c2=a2+b22abcosC hay c2=32+42234cos30°=25123. Do đó, \(c \approx 2,05(\;cm)\).

Ta có \({a^2} = {b^2} + {c^2} - 2bc\cos A \Rightarrow \cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}} = \frac{{{4^2} + {{(25 - 12\sqrt 3 )}^2} - {3^2}}}{{2 \cdot 4 \cdot \sqrt {25 - 12\sqrt 3 } }} \approx 0,68\).

Suy ra A^47,2°. Do đó, B^=180°A^C^=180°47,2°30°=102,8°

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Vì \(\tan \alpha  = \frac{{\sin \alpha }}{{\cos \alpha }} = \frac{1}{3}\) nên \(\cos \alpha  \ne 0\).

Chia cả tử và mẫu của \(P\) cho \(\cos \alpha \), ta được: \(A = \frac{{3\frac{{\sin \alpha }}{{\cos \alpha }} + 4}}{{2\frac{{\sin \alpha }}{{\cos \alpha }} - 5}} = \frac{{3\tan \alpha  + 4}}{{2\tan \alpha  - 5}} = \frac{{3 \cdot \frac{1}{3} + 4}}{{2 \cdot \frac{1}{3} - 5}} =  - \frac{{15}}{{13}}{\rm{. }}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP