Câu hỏi:

16/10/2025 12 Lưu

Trên một cánh đồng điện năng lượng mặt trời, người ta đã thiết lập sẵn một hệ tọa độ \(Oxyz\). Hai tấm pin năng lượng lần lượt nằm trong hai mặt phẳng \(\left( P \right):2x + 2z + 1 = 0\) và \(\left( {P'} \right):x + z + 7 = 0\).

A solar panels in a field

Description automatically generated

a) Tính góc giữa \(\left( P \right)\) và \(\left( {P'} \right)\).

b) Tính góc hợp bởi \(\left( P \right)\) và \(\left( {P'} \right)\) với mặt đất \(\left( Q \right)\) có phương trình \(z = 0\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Mặt phẳng \(\left( P \right)\) có vectơ pháp tuyến là \(\vec n = \left( {2;0;2} \right)\) và mặt phẳng \(\left( {P'} \right)\) có vectơ pháp tuyến là \({\vec n^{\rm{'}}} = \left( {1;0;1} \right)\) nên\({\rm{cos}}\left( {\left( P \right),\left( {P'} \right)} \right) = \frac{{\left| {2.1 + 0.0 + 2.1} \right|}}{{\sqrt {{2^2} + {0^2} + {2^2}} .\sqrt {{1^2} + {0^2} + {1^2}} }} = \frac{4}{4} = 1\)

Suy ra \(\left( {\left( P \right),\left( {P'} \right)} \right) = 0^\circ \).

b) Mặt phẳng \(\left( Q \right)\) có vectơ pháp tuyến là \(\overrightarrow {{n_Q}}  = \left( {0;0;1} \right)\).

\({\rm{cos}}\left( {\left( P \right),\left( Q \right)} \right) = \frac{{\left| {2.0 + 0.0 + 2.1} \right|}}{{\sqrt {{2^2} + {0^2} + {2^2}} .\sqrt {{1^2}} }} = \frac{2}{{2\sqrt 2 }} = \frac{1}{{\sqrt 2 }}\)\( \Rightarrow \left( {\left( P \right),\left( Q \right)} \right) = 45^\circ \).

\({\rm{cos}}\left( {\left( {P'} \right),\left( Q \right)} \right) = \frac{{\left| {1.0 + 0.0 + 1.1} \right|}}{{\sqrt {{1^2} + {0^2} + {1^2}} .\sqrt {{1^2}} }} = \frac{1}{{\sqrt 2 }}\)\( \Rightarrow \left( {\left( {P'} \right),\left( Q \right)} \right) = 45^\circ \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(M\left( {a;b;c} \right)\). Khi đó ta có:

\({\left( {a + 1} \right)^2} + {\left( {b - 6} \right)^2} + {\left( {c - 3} \right)^2} = 36 \Leftrightarrow {a^2} + {b^2} + {c^2} + 2a - 12b - 6c + 10 = 0\)             \(\left( 1 \right)\)

\({\left( {a - 4} \right)^2} + {\left( {b - 8} \right)^2} + {\left( {c - 1} \right)^2} = 49 \Leftrightarrow {a^2} + {b^2} + {c^2} - 8a - 16b - 2c + 32 = 0\)          \(\left( 2 \right)\)

\({\left( {a - 9} \right)^2} + {\left( {b - 6} \right)^2} + {\left( {c - 7} \right)^2} = 144 \Leftrightarrow {a^2} + {b^2} + {c^2} - 18a - 12b - 14c + 22 = 0\)      \(\left( 3 \right)\)

\({\left( {a + 15} \right)^2} + {\left( {b - 18} \right)^2} + {\left( {c - 7} \right)^2} = 576 \Leftrightarrow {a^2} + {b^2} + {c^2} + 30a - 36b - 14c + 22 = 0\) \(\left( 4 \right)\)

Giải hệ gồm 4 phương trình trên ta được \(a = 1;b = 2;c =  - 1\) nên \(M\left( {1;2; - 1} \right)\).

Vậy \(T = 1 + 2 + \left( { - 1} \right) = 2\).

Đáp án: 2.

Lời giải

Phương trình tham số của đường cáp là: \[d:\left\{ \begin{array}{l}x =  - 2\\y = 1 - 2k\\z = 5 + 6k\end{array} \right.\begin{array}{*{20}{c}}{}&{\left( {k \in \mathbb{R}} \right)}\end{array}\]

Do tốc độ chuyển động của cabin là \(4\,{\rm{m/s}}\) nên độ dài \(AM = 4t\) \(\left( m \right)\).

Vì vậy sau \[5\] (s) kể từ lúc xuất phát, cabin đến điểm \[M\] thì \(AM = 4.5 = 20\) \(\left( m \right)\).

Vì \[M \in d \Rightarrow M\left( { - 2;1 - 2k;5 + 6k} \right)\].

\[\overrightarrow {AM}  = \left( {0; - 2k;6k} \right)\]. Do 2 vec tơ \[\overrightarrow {AM} ;\vec u\] cùng hướng \(k > 0\).

\(AM = 20 \Leftrightarrow \sqrt {{0^2} + 4{k^2} + 36{k^2}}  = 20 \Leftrightarrow 40{k^2} = 400 \Leftrightarrow k =  \pm \sqrt {10} \).

Vì \(k > 0 \Rightarrow k = \sqrt {10} \).

Vậy tọa độ \[M\left( { - 2;1 - 2\sqrt {10} ;5 + 6\sqrt {10} } \right)\]. Khi đó \[a + 3b + c =  - 2 + 3\left( {1 - 2\sqrt {10} } \right) + 5 + 6\sqrt {10}  = 6\].

Đáp án: 6.

Câu 3

A.

\({\left( {x - 2} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 1} \right)^2} = 8\).

B.

\({\left( {x - 2} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 1} \right)^2} = 2\).

C.

\({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 2} \right)^2} = 8\).

D.

\({\left( {x - 3} \right)^2} + {\left( {y - 1} \right)^2} + {z^2} = 2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A.

\({\left( {x - 1} \right)^2} + {y^2} + {\left( {z + 1} \right)^2} = 9\).

B.

\({\left( {x - 1} \right)^2} + {y^2} + {\left( {z + 1} \right)^2} = 3\).

C.

\({\left( {x + 1} \right)^2} + {y^2} + {\left( {z - 1} \right)^2} = 9\).

D.

\({\left( {x + 1} \right)^2} + {y^2} + {\left( {z - 1} \right)^2} = 3\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP