Cho (H) là hình phẳng giới hạn bởi đồ thị hàm số \(y = \sqrt {x + 4} \), trục hoành và trục tung. Biết đường thẳng \(d:ax + by - 16 = 0\) đi qua \(A\left( {0;2} \right)\) và chia (H) thành hai phần có diện tích bằng nhau. Tính \(a + b\).

Cho (H) là hình phẳng giới hạn bởi đồ thị hàm số \(y = \sqrt {x + 4} \), trục hoành và trục tung. Biết đường thẳng \(d:ax + by - 16 = 0\) đi qua \(A\left( {0;2} \right)\) và chia (H) thành hai phần có diện tích bằng nhau. Tính \(a + b\).

Quảng cáo
Trả lời:
Gọi \(S\) là diện tích hình (H), suy ra \(S = \int\limits_{ - 4}^0 {\sqrt {x + 4} dx} = \frac{{16}}{3}\).
Gọi S1 là diện tích hình (H1) giới hạn bởi đường thẳng d, trục tung và trục hoành.
Do \(d:ax + by - 16 = 0\) đi qua \(A\left( {0;2} \right)\) suy ra \(b = 8\).
Theo giả thiết \({S_1} = \frac{S}{2} = \frac{8}{3}\) mà \({S_1} = \frac{1}{2}OA.OB \Rightarrow OB = \frac{8}{3} \Rightarrow B\left( { - \frac{8}{3};0} \right)\).
Do \(B \in d \Rightarrow a = - 6\).
Vậy \(a + b = 2\).
Trả lời: 2.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Phương trình hoành độ giao điểm: \({x^2} - 3x + 2 = x - 1 \Leftrightarrow {x^2} - 4x + 3 = 0\)\( \Leftrightarrow x = 1\) hoặc \(x = 3\).
Diện tích cần tính là \({S_2} = \int\limits_1^3 {\left| {x - 1 - \left( {{x^2} - 3x + 2} \right)} \right|dx} = \int\limits_1^3 {\left( { - {x^2} + 4x - 3} \right)dx} = \left. {\left( { - \frac{{{x^3}}}{3} + 2{x^2} - 3x} \right)} \right|_1^3 = \frac{4}{3}\).
b) \({S_1} = \int\limits_0^1 {\left| {{x^2} - 3x + 2 - \left( {x - 1} \right)} \right|dx} = \int\limits_0^1 {\left( {{x^2} - 4x + 3} \right)dx} \)\( = \left. {\frac{{{x^3}}}{3} - 2{x^2} + 3x} \right|_0^1 = \frac{4}{3}\).
c) \({S_1} = {S_2} = \frac{4}{3}\).
d) Diện tích cần tìm là \(S = \int\limits_0^3 {\left| {{x^2} - 3x + 2 - \left( {x - 1} \right)} \right|dx} = \int\limits_0^3 {\left| {{x^2} - 4x + 3} \right|dx} \)\( = \int\limits_0^1 {\left( {{x^2} - 4x + 3} \right)dx} + \int\limits_1^3 {\left( { - {x^2} + 4x - 3} \right)dx} = {S_1} + {S_2} = 2.\frac{4}{3} = \frac{8}{3}\).
Đáp án: a) Sai; b) Đúng; c) Đúng; d) Sai.
Câu 2
Lời giải
Chọn A
Diện tích cần tìm là \(S = \int\limits_0^\pi {\left| {\cos x} \right|dx} = \int\limits_0^{\frac{\pi }{2}} {\cos xdx} - \int\limits_{\frac{\pi }{2}}^\pi {\cos xdx} \)\( = \left. {\sin x} \right|_0^{\frac{\pi }{2}} - \left. {\sin x} \right|_{\frac{\pi }{2}}^\pi \)\( = 1 + 1 = 2\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

