Cho \(3y - x = 6.\) Tính giá trị của biểu thức \(A = \frac{x}{{y - 2}} + \frac{{2x - 3y}}{{x - 6}}.\)
Cho \(3y - x = 6.\) Tính giá trị của biểu thức \(A = \frac{x}{{y - 2}} + \frac{{2x - 3y}}{{x - 6}}.\)
Quảng cáo
Trả lời:
Đáp án: 4
Có \(3y - x = 6\) nên \(x = 3y - 6\).
Thay \(x = 3y - 6\) vào \(A = \frac{x}{{y - 2}} + \frac{{2x - 3y}}{{x - 6}},\) ta được:
\(A = \frac{{3y - 6}}{{y - 2}} + \frac{{2\left( {3y - 6} \right) - 3y}}{{3y - 6 - 6}}\)
\( = \frac{{3\left( {y - 2} \right)}}{{y - 2}} + \frac{{6y - 12 - 3y}}{{3y - 12}}\)
\( = 3 + \frac{{3y - 12}}{{3y - 12}}\)
\( = 3 + 1 = 4\).
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: 0,5
Với \(x \ne \pm 2\), ta có: \(A = \frac{{x + 4}}{{2\left( {x + 2} \right)}} - \frac{{x - 2}}{{\left( {x - 2} \right)\left( {x + 2} \right)}} = \frac{{x + 4}}{{2\left( {x + 2} \right)}} - \frac{1}{{x + 2}} = \frac{{x + 4 - 2}}{{2\left( {x + 2} \right)}} = \frac{{x + 2}}{{2\left( {x + 2} \right)}} = \frac{1}{2} = 0,5\).
Câu 2
Lời giải
Đáp án đúng là: A
Ta có: \(\frac{{ - x - 1}}{{3x + 1}}:\frac{{{x^2} - 1}}{{9{x^2} - 1}} = \frac{{ - x - 1}}{{3x + 1}}.\frac{{9{x^2} - 1}}{{{x^2} - 1}} = \frac{{ - \left( {x + 1} \right)\left( {3x - 1} \right)\left( {3x + 1} \right)}}{{\left( {3x + 1} \right)\left( {x - 1} \right)\left( {x + 1} \right)}} = \frac{{ - \left( {3x - 1} \right)}}{{x - 1}} = \frac{{1 - 3x}}{{x - 1}}\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.