Tính thể tích vật thể tròn xoay thu được khi quay hình phẳng (phần gạch sọc của hình vẽ) xung quanh trục Ox (làm tròn đến hàng phần trăm).

Tính thể tích vật thể tròn xoay thu được khi quay hình phẳng (phần gạch sọc của hình vẽ) xung quanh trục Ox (làm tròn đến hàng phần trăm).

Quảng cáo
Trả lời:
Thể tích cần tìm là \(V = \pi \int\limits_0^2 {{{\left( {2x - {x^2}} \right)}^2}dx} \)\( = \pi \int\limits_0^2 {\left( {4{x^2} - 4{x^3} + {x^4}} \right)dx} \)\( = \left. {\pi \left( {\frac{{4{x^3}}}{3} - {x^4} + \frac{{{x^5}}}{5}} \right)} \right|_0^2 = \frac{{16\pi }}{{15}} \approx 3,35\).
Trả lời: 3,35.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
PHẦN II. TRẮC NGHIỆM ĐÚNG – SAI
Cho hàm số \(f\left( x \right)\) liên tục trên \(\left[ {a;d} \right]\) và có đồ thị như hình vẽ. Biết đồ thị \(f\left( x \right)\) cắt trục hoành tại 4 điểm a, b, c, d đồng thời tạo với trục hoành và 2 đường thẳng \(x = a,x = d\) thành một hình phẳng (H) gồm 3 phần có diện tích lần lượt là S1; S2; S3 như hình vẽ.

a) Hình phẳng có diện tích S3 khi quay quanh trục hoành tạo ra vật thể tròn xoay có thể tích là \(V = \int\limits_c^d {{{\left[ {f\left( x \right)} \right]}^2}dx} \).
b) Hình phẳng (H) khi quay quanh trục hoành tạo ra vật thể tròn xoay có thể tích là \(V = \pi \int\limits_a^d {{{\left[ {f\left( x \right)} \right]}^2}dx} \).
c) \({S_1} = \int\limits_a^b {f\left( x \right)dx} \).
d) \({S_2} = - \int\limits_b^c {f\left( x \right)dx} \).
PHẦN II. TRẮC NGHIỆM ĐÚNG – SAI
Cho hàm số \(f\left( x \right)\) liên tục trên \(\left[ {a;d} \right]\) và có đồ thị như hình vẽ. Biết đồ thị \(f\left( x \right)\) cắt trục hoành tại 4 điểm a, b, c, d đồng thời tạo với trục hoành và 2 đường thẳng \(x = a,x = d\) thành một hình phẳng (H) gồm 3 phần có diện tích lần lượt là S1; S2; S3 như hình vẽ.

a) Hình phẳng có diện tích S3 khi quay quanh trục hoành tạo ra vật thể tròn xoay có thể tích là \(V = \int\limits_c^d {{{\left[ {f\left( x \right)} \right]}^2}dx} \).
b) Hình phẳng (H) khi quay quanh trục hoành tạo ra vật thể tròn xoay có thể tích là \(V = \pi \int\limits_a^d {{{\left[ {f\left( x \right)} \right]}^2}dx} \).
c) \({S_1} = \int\limits_a^b {f\left( x \right)dx} \).
d) \({S_2} = - \int\limits_b^c {f\left( x \right)dx} \).
Lời giải
a) Hình phẳng có diện tích S3 khi quay quanh trục hoành tạo ra vật thể tròn xoay có thể tích là \(V = \pi \int\limits_c^d {{{\left[ {f\left( x \right)} \right]}^2}dx} \).
b) Hình phẳng (H) khi quay quanh trục hoành tạo ra vật thể tròn xoay có thể tích là \(V = \pi \int\limits_a^d {{{\left[ {f\left( x \right)} \right]}^2}dx} \).
c) \({S_1} = \int\limits_a^b {\left| {f\left( x \right)} \right|dx} = \int\limits_a^b {f\left( x \right)dx} \).
d) \({S_2} = \int\limits_b^c {\left| {f\left( x \right)} \right|dx} = - \int\limits_b^c {f\left( x \right)dx} \).
Đáp án: a) Sai; b) Đúng; c) Đúng; d) Đúng.
Lời giải
a) Mặt phẳng vuông góc với trục Ox tại \(x\left( { - 1 \le x \le 1} \right)\) cắt vật thể (T) theo mặt cắt có diện tích không đổi S(x) liên tục [−1; 1].
b) \(V = \int\limits_{ - 1}^1 {S\left( x \right)dx} \).
c) Diện tích của mặt cắt là \(S\left( x \right) = {\left( {2\sqrt {1 - {x^2}} } \right)^2} = 4\left( {1 - {x^2}} \right)\).
d) Thể tích vật thể (T) là \(V = \int\limits_{ - 1}^1 {S\left( x \right)dx} = \int\limits_{ - 1}^1 {{{\left( {2\sqrt {1 - {x^2}} } \right)}^2}dx} = \frac{{16}}{3}\).
Đáp án: a) Đúng; b) Sai; c) Sai; d) Đúng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


