Một công ty bảo hiểm nhận thấy có \(52\% \)số người mua bảo hiểm ô tô là đàn ông và có \(39\% \)số người mua bảo hiểm ô tô là đàn ông trên 40 tuổi.
(a) Biết một người mua bảo hiểm ô tô là đàn ông, tính xác suất người đó trên 40 tuổi.
(b) Tính tỉ lệ người trên 40 tuổi trong số những người đàn ông mua bảo hiểm ô tô.
Câu hỏi trong đề: Bài tập ôn tập Toán 12 Cánh diều Chương 6 có đáp án !!
Quảng cáo
Trả lời:

a) Gọi \(A\) là biến cố “Người mua bảo hiểm ô tô là đàn ông”, \(B\) là biến cố “Người mua bảohiểm ô tô trên 40 tuổi”. Ta cần tính \[P\left( {B|A} \right)\].
Do có \(52\% \) người mua bảo hiểm ô tô là đàn ông nên \[P\left( A \right) = 0,52\].
Do có \(39\% \) số người mua bảo hiểm ô tô là đàn ông trên 40 tuổi nên \[P\left( {AB} \right) = 0,39\].
Vậy \[P\left( {B|A} \right) = \frac{{P\left( {AB} \right)}}{{P\left( A \right)}} = \frac{{0,39}}{{0,52}} = 0,75\].
b) Trong số những người đàn ông mua bảo hiểm ô tô thì có 75% người trên 40 tuổi.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \(A\) là biến cố: “Cây bố có kiểu gene bb”; \[M\] là biến cố: “Cây con lấy gene b từ cây bố”;
\[N\] là biến cố: “Cây con lấy gene b từ cây mẹ”; \[E\] là biến cố: “Cây con có kiểu gene bb”.
Theo giả thiết \(M\) và \(N\) độc lập nên \(P\left( E \right) = P\left( M \right).P\left( N \right)\).
Ta áp dụng công thức xác suất toàn phần \(P\left( M \right) = P\left( A \right).P\left( {M|A} \right) + P\left( {\overline A } \right).P\left( {M|\overline A } \right)\).
Ta có \(P\left( A \right) = 0,4\,;\,\,P\left( {\overline A } \right) = 0,6\).
a) Sai. \[P\left( {M\mid A} \right)\] là xác suất để cây con lấy gene b từ cây bố với điều kiện cây bố có kiểu gene bb. Do đó \(P\left( {M\mid A} \right) = 1\).
b) Đúng. \[P\left( {M\mid \overline A } \right)\] là xác suất để cây con lấy gene b từ cây bố với điều kiện cây bố có kiểu gene Bb. Do đó \(P\left( {M\mid \overline A } \right) = \frac{1}{2}\).
c) Sai. Thay vào \(\left( * \right)\) ta được: \(P\left( M \right) = 0,4.1 + 0,6.\,\,0,5 = 0,4 + 0,3 = 0,7\).
d) Đúng. Tương tự tính được \(P\left( N \right) = 0,7\). Vậy \(P\left( E \right) = P\left( M \right).P\left( N \right) = 0,7.0,7 = 0,49\).
Từ kết quả trên suy ra trong một quần thể các cây đậu Hà Lan, ở đó tỉ lệ cây bố và cây mẹ mang kiểu gene bb, Bb tương ứng là \(40\% \) và \(60\% \), thì tỉ lệ cây con có kiểu gene bb là khoảng \(49\% \).
Lời giải
a) Sai. Ta có: \(P\left( A \right) = \frac{5}{{12}} \Rightarrow P\left( {\overline A } \right) = 1 - P\left( A \right) = \frac{7}{{12}}\).
b) Sai. Nếu \(A\) xảy ra thì khi đó hộp hai chứa \(7\) bi xanh và \(8\) bi đỏ.
Chọn hai bi bất kì từ hộp hai có \(C_{15}^2\) cách. Chọn hai bi đỏ từ hộp hai có \(C_8^2\) cách.
Suy ra: \[P\left( {B|A} \right) = \frac{{C_8^2}}{{C_{15}^2}} = \frac{4}{{15}}\].
c) Đúng. Nếu \(A\) không xảy ra thì khi đó hộp hai chứa \(6\) bi xanh và \(9\) bi đỏ.
Chọn hai bi bất kì từ hộp hai có \(C_{15}^2\) cách. Chọn hai bi đỏ từ hộp hai có \(C_9^2\) cách.
Suy ra: \[P\left( {B|\overline A } \right) = \frac{{C_9^2}}{{C_{15}^2}} = \frac{{12}}{{35}}\].
d) Đúng. Áp dụng công thức xác suất toàn phần:
\[P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P(B\mid \overline A ) = \frac{5}{{12}}.\frac{4}{{15}} + \frac{7}{{12}}.\frac{{12}}{{35}} = \frac{{14}}{{45}}\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
\(0,2\).
\(0,3\).
\(0,4\).
\(0,6\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.