Cho hình chóp tứ giác đều \[S.ABCD\] có cạnh đáy bằng 1. Các điểm \[M,N,P\] lần lượt là trung điểm của \[SA,SB,SC\]. Mặt phẳng \[\left( {MNP} \right)\] cắt hình chóp theo một thiết diện có diện tích bằng bao nhiêu?
Cho hình chóp tứ giác đều \[S.ABCD\] có cạnh đáy bằng 1. Các điểm \[M,N,P\] lần lượt là trung điểm của \[SA,SB,SC\]. Mặt phẳng \[\left( {MNP} \right)\] cắt hình chóp theo một thiết diện có diện tích bằng bao nhiêu?
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: \[0,25\]
![Cho hình chóp tứ giác đều \[S.ABCD\] có cạnh (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/10/6-1760762814.png)
Gọi \[Q\] là trung điểm \[SD\].
Tam giác \[SAD\] có \[M,Q\] lần lượt là trung điểm của \[SA,SD\]. Suy ra \[MQ\parallel AD\] và \[MQ = \frac{1}{2}AD\].
Tam giác \[SBC\] có \[N,P\] lần lượt là trung điểm của \[SB,SC\]. Suy ra \[NP\parallel BC\] và \[NP = \frac{1}{2}BC\].
Mặt khác \[AD\parallel BC\] và \[AD = BC\] suy ra \[MQ\parallel NP\] và \[MQ = NP\]\[ \Rightarrow MNPQ\] là hình bình hành.
Khi đó, \[M,N,P,Q\] đồng phẳng \[ \Rightarrow \left( {MNP} \right)\] cắt \[SD\] tại \[Q\] và \[MNPQ\] là thiết diện của hình chóp \[S.ABCD\] với mặt phẳng \[\left( {MNP} \right)\].
Vậy \[{S_{MNPQ}} = \frac{{{S_{ABCD}}}}{4} = \frac{{{1^2}}}{4} = 0,25.\]
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp án đúng là: 14
Mực nước của con kênh cao nhất khi độ sâu của mực nước trong kênh lớn nhất.
Ta có: \[ - 1 \le \cos \left( {\frac{{\pi t}}{8} + \frac{\pi }{4}} \right) \le 1\] \[ \Leftrightarrow 9 \le 3\cos \left( {\frac{{\pi t}}{8} + \frac{\pi }{4}} \right) + 12 \le 15\].
Do đó mực nước của con kênh cao nhất bằng \[15{\rm{ }}\left( m \right)\] khi \[\cos \left( {\frac{{\pi t}}{8} + \frac{\pi }{4}} \right) = 1\]
\[ \Leftrightarrow \frac{{\pi t}}{8} + \frac{\pi }{4} = k2\pi {\rm{ }}\left( {k \in \mathbb{Z}} \right) \Leftrightarrow t = - 2 + 16k\], \[k \in \mathbb{Z}\].
Vì trong một ngày có 24 giờ nên \[0 \le - 2 + 16k \le 24 \Leftrightarrow \frac{1}{8} \le k \le \frac{{26}}{{16}}\].
Vì \[k \in \mathbb{Z}\] nên \[k = 1\] do đó \[t = 14\].
Vậy mực nước của con kênh cao nhất khi \[t = 14\] giờ.
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: D
Điều kiện xác định: \[\sin x \ne 0\] \[ \Leftrightarrow x \ne k\pi {\rm{ }}\left( {k \in \mathbb{Z}} \right).\]
Do đó, \[D = \mathbb{R}\backslash \left\{ {k\pi ,{\rm{ }}k \in \mathbb{Z}} \right\}.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.