Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình thang với \[AD\parallel BC\] và \[AD = 2BC\]. Gọi \[M\] là điểm trên cạnh \[SD\] thỏa mãn \[SM = \frac{1}{3}SD.\] Mặt phẳng \[\left( {ABM} \right)\] cắt cạnh bên \[SC\] tại điểm \[N\]. Tính tỉ số \[\frac{{SN}}{{SC}}.\]
Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình thang với \[AD\parallel BC\] và \[AD = 2BC\]. Gọi \[M\] là điểm trên cạnh \[SD\] thỏa mãn \[SM = \frac{1}{3}SD.\] Mặt phẳng \[\left( {ABM} \right)\] cắt cạnh bên \[SC\] tại điểm \[N\]. Tính tỉ số \[\frac{{SN}}{{SC}}.\]
Quảng cáo
Trả lời:

Hướng dẫn giải
Đáp án đúng là: 0,5
![Cho hình chóp \[S.ABCD\] có đáy \[ABCD (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/10/14-1760768486.png)
Gọi \[F = AB \cap CD\]. Nối \[F\] với \[M\], \[FM \cap SC = N\]. Khi đó, \[N\] là giao điểm của \[\left( {ABM} \right)\] và \[SC\].
Theo giả thiết, ta có \[AD = 2BC\] và \[AD\parallel BC\] do đó \[BC\] là đường trung bình của tam giác \[FAD\].
Suy ra \[C\] là trung điểm của \[FD\].
Trong mặt phẳng \[\left( {SCD} \right)\] kẻ \[CE\parallel NM,{\rm{ }}\left( {E \in SD} \right)\].
Do \[C\] là trung điểm \[FD\] nên suy ra \[E\] là trung điểm \[MD\] và \[M\] là trung điểm \[SE\].
Do \[MN\parallel CE\] và \[M\] là trung điểm \[SE\] nên \[MN\] là đường trung bình của tam giác \[SCE.\]
Từ đó suy ra \[N\] là trung điểm \[SC\] và \[\frac{{SN}}{{SC}} = \frac{1}{2} = 0,5.\]
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Ta có: \[{u_5} = {u_1}.{q^4} \Leftrightarrow {q^4} = 81 \Leftrightarrow q = \pm 3.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.