Câu hỏi:

18/10/2025 16 Lưu

Khi đo cân nặng của học sinh lớp 11D, ý tá lập được bảng số liệu ghép nhóm sau đây:

Khi đo cân nặng của học sinh lớp 11D, ý tá lập được bảng số liệu ghép nhóm sau đây:   Tứ phân vị thứ nhất của mẫu số liệu của học sinh lớp 11D bằng bao nhiêu? (Kết quả được làm tròn đến hàng phần chục). (ảnh 1)

Tứ phân vị thứ nhất của mẫu số liệu của học sinh lớp 11D bằng bao nhiêu? (Kết quả được làm tròn đến hàng phần chục).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: 45,9.

Cỡ mẫu là \[n = 10 + 7 + 16 + 4 + 2 + 3 = 42\].

Ta có: \[\frac{n}{4} = \frac{{42}}{4} = 10,5.\] Do đó, nhóm chứa tứ phân vị thứ nhất là \[\left[ {45,5;50,5} \right)\].

Suy ra \[{Q_1} = 45,5 + \frac{{10,5 - 10}}{7}.\left( {50,5 - 45,5} \right) \approx 45,9\].

Vậy tứ phân vị thứ nhất của mẫu số liệu đó là \[45,9.\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

a) Đ

b) S

c) S

d) S

Ta thấy, số tiền lương năm sau hơn năm trước \[20\] triệu đồng nên \[\left( {{u_n}} \right)\] là cấp số cộng có \[{u_1} = 100\] và công sai \[d = 20\].

Do đó, \[{u_n} = {u_1} + \left( {n - 1} \right)d = 100 + \left( {n - 1} \right).20 = 20n + 80\].

Số tiền lương sinh viên nhận được ở năm thứ hai là

\[{u_2} = 100 + \left( {2 - 1} \right).20 = 120\] (triệu đồng).

Số tiền lương sinh viên nhận được ở năm thứ 10 là

\[{u_{10}} = 100 + \left( {10 - 1} \right).20 = 280\] (triệu đồng).

Số tiền bạn sinh viên tiết kiệm được sau \[n\] năm là

\[S = \frac{n}{2}\left[ {2{u_1} + \left( {n - 1} \right)d} \right] - 70n\]

   \[ = \frac{n}{2}\left[ {2.100 + \left( {n - 1} \right).20} \right] - 70n\]

   \[ = 10{n^2} + 20n\] (triệu đồng).

Ta có: \[S \ge 2000 \Leftrightarrow 10{n^2} + 20n \ge 2000\]

\[ \Leftrightarrow 10{n^2} + 20n - 2000 \ge 0 \Leftrightarrow \left[ \begin{array}{l}n \ge 13,1{\rm{ }}\left( {TM} \right)\\n \le - 15,1{\rm{ }}\left( L \right)\end{array} \right.\].

Do đó, sau ít nhất 14 năm thì sinh viên có thể mua được chung cử 2 tỉ đồng.

Lời giải

Hướng dẫn giải

Đáp án đúng là: 10

Số lượng vi khuẩn tăng lên gấp đôi là cấp số nhân \[\left( {{u_n}} \right)\] với công bội \[q = 2\].

Ta có: \[{u_6} = 64000\] \[ \Rightarrow {u_1}.{q^5} = 64000\] \[ \Rightarrow {u_1} = 2000\].

Sau \[n\] phút thì số lượng vi khuẩn là \[{u_{n + 1}}\].

\[{u_{n + 1}} = 2048000\] \[ \Rightarrow {u_1}.{q^n} = 2048000\]\[ \Rightarrow {2000.2^n} = 2048000\]\[ \Rightarrow n = 10\].

Vậy sau 10 phút thì có được \[2048000\] con.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[17,5.\]               
B. \[35.\]                          
C. \[5.\]                         
D. \[20.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP