PHẦN II. Câu trắc nghiệm đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Cho cấp số nhân \(\left( {{u_n}} \right)\) với \(\left\{ \begin{array}{l}{u_1} = 3\\{u_{n + 1}} = 5{u_n}\end{array} \right.\left( {\forall n \in \mathbb{N}*} \right)\).
a) Số hạng đầu và công bội của cấp số nhân là \({u_1} = 3;q = 5\).
b) Số hạng thứ 7 của cấp số nhân là \({u_7} = 46857\).
c) \(29296875\) là số hạng thứ 11 của cấp số nhân.
d) \(M = {u_4} + {u_5} + {u_6} + {u_7} + {u_8} + {u_9} = 1464750\).
PHẦN II. Câu trắc nghiệm đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Cho cấp số nhân \(\left( {{u_n}} \right)\) với \(\left\{ \begin{array}{l}{u_1} = 3\\{u_{n + 1}} = 5{u_n}\end{array} \right.\left( {\forall n \in \mathbb{N}*} \right)\).
a) Số hạng đầu và công bội của cấp số nhân là \({u_1} = 3;q = 5\).
b) Số hạng thứ 7 của cấp số nhân là \({u_7} = 46857\).
c) \(29296875\) là số hạng thứ 11 của cấp số nhân.
d) \(M = {u_4} + {u_5} + {u_6} + {u_7} + {u_8} + {u_9} = 1464750\).
Quảng cáo
Trả lời:
a) Đ, b) S, c) Đ, d) Đ
a) Ta có \(\left\{ \begin{array}{l}{u_1} = 3\\{u_{n + 1}} = 5{u_n}\end{array} \right.\left( {\forall n \in \mathbb{N}*} \right)\). Khi đó \(\left( {{u_n}} \right)\) là cấp số nhân có số hạng đầu là \({u_1} = 3\); công bội \(q = 5\).
b) Số hạng thứ 7 của cấp số nhân là \({u_7} = {u_1}.{q^6} = {3.5^6} = 46875\).
c) \({u_n} = 29296875\)\( \Leftrightarrow {u_1}.{q^{n - 1}} = 29296875\)\( \Leftrightarrow {3.5^{n - 1}} = 29296875\)\( \Leftrightarrow {5^{n - 1}} = 9765625\)
\( \Leftrightarrow {5^{n - 1}} = {5^{10}}\)\( \Leftrightarrow n = 11\).
d) Có \(M = {u_4} + {u_5} + {u_6} + {u_7} + {u_8} + {u_9} = {S_9} - {S_3}\)
\( = {u_1}.\frac{{1 - {q^9}}}{{1 - q}} - {u_1}.\frac{{1 - {q^3}}}{{1 - q}}\)\( = 3.\frac{{1 - {5^9}}}{{1 - 5}} - 3.\frac{{1 - {5^3}}}{{1 - 5}} = 1464750\).
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Trả lời: 0,75
Với mọi \(t \ge 0\), ta có \( - 1 \le \cos \left( {2\pi t + \frac{\pi }{2}} \right) \le 1\)\( \Leftrightarrow - 2 \le 2\cos \left( {2\pi t + \frac{\pi }{2}} \right) \le 2\).
Do đó li độ lớn nhất là \(x = 2\) cm xảy ra khi \(\cos \left( {2\pi t + \frac{\pi }{2}} \right) = 1\)\( \Leftrightarrow 2\pi t + \frac{\pi }{2} = k2\pi \)\[ \Leftrightarrow t = k - \frac{1}{4},k \in \mathbb{Z}\].
Vì \(t \ge 0\) nên \(k - \frac{1}{4} \ge 0 \Leftrightarrow k \ge \frac{1}{4}\).
Vì \(k \in \mathbb{Z}\), suy ra thời điểm đầu tiên thỏa mãn ứng với \(k = 1\). Suy ra \({t_0} = \frac{3}{4} = 0,75\) giây.
Lời giải
a) Đ, b) Đ, c) Đ, d) S

a) Vì \(ABCD.A'B'C'D'\) là hình hộp nên \(\left\{ {\begin{array}{*{20}{l}}{A'D'//BC}\\{A'D' = BC}\end{array} \Rightarrow A'D'CB} \right.\) là hình bình hành.
b) \(A'D'CB\) là hình bình hành nên \(A'B//CD' \Rightarrow A'B//\left( {B'D'C} \right)\). (1)
Tương tự, ta có: \(\left\{ {\begin{array}{*{20}{l}}{A'B'//CD}\\{A'B' = CD}\end{array} \Rightarrow A'B'CD} \right.\) là hình bình hành.
Suy ra \(A'D//B'C \Rightarrow A'D//\left( {B'D'C} \right)\).(2)
Từ (1) và \((2)\) suy ra \(\left( {A'BD} \right)//\left( {B'D'C} \right)\).
c) Gọi \(O,O',I\) theo thứ tự là tâm của các hình bình hành \(ABCD,A'B'C'D'\), \(ACC'A'\).

Vì \({G_1}\) là trọng tâm tam giác \(AB'D\) nên \(\frac{{A'{G_1}}}{{A'O}} = \frac{2}{3}\) \( \Rightarrow {G_1}\) là trọng tâm tam giác \(A'AC\), suy ra \({G_1} = AI \cap A'O\). (3)
Tương tự, \({G_2}\) là trọng tâm tam giác \(B'D'C\) nên \(\frac{{C{G_2}}}{{CO'}} = \frac{2}{3}\).
\( \Rightarrow {G_2}\) là trọng tâm tam giác \(A'C'C\), suy ra \({G_2} = C'I \cap CO'\). (4)
Từ (3) và (4) suy ra \({G_1},{G_2}\) cùng thuộc \(AC'\).
d) Chứng minh \(A{G_1} = {G_1}{G_2} = {G_2}C' = \frac{1}{3}AC'\):
Ta có: \(\frac{{A{G_1}}}{{AI}} = \frac{2}{3} \Rightarrow \frac{{A{G_1}}}{{AC'}} = \frac{1}{3};\frac{{C'{G_2}}}{{C'I}} = \frac{2}{3} \Rightarrow \frac{{C'{G_2}}}{{AC'}} = \frac{1}{3}\).
Do vậy \(A{G_1} \buildrel\textstyle.\over= {G_1}{G_2} = {G_2}C' = \frac{1}{3}AC'\).
Vậy \({G_1},{G_2}\) cùng thuộc \(AC'\), đồng thời chia \(AC'\) thành ba phần bằng nhau.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
