Câu hỏi:

20/10/2025 380 Lưu

Cho hình vuông \(ABCD\) có độ dài bằng 1 . Nối các trung điểm của bốn cạnh hình vuông \(ABCD\), ta được hình vuông thứ hai. Tiếp tục nối các trung điểm của bốn cạnh hình vuông thứ hai, ta được hình vuông thứ ba. Tiếp tục như thế ta nhận được một dãy các hình vuông. Tìm tổng chu vi của dãy các hình vuông đó (kết quả làm tròn đến hàng phần mười).

Cho hình vuông \(ABCD\) có độ dài bằng 1 . Nối (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Trả lời: 13,7

Nếu cạnh hình vuông ban đầu là \(x\) thì theo định lí Pythagore, ta có cạnh hình vuông thứ hai là \(\sqrt {{{\left( {\frac{x}{2}} \right)}^2} + {{\left( {\frac{x}{2}} \right)}^2}} = \frac{{x\sqrt 2 }}{2}.(*)\)

Gọi cạnh hình vuông \(ABCD\)\({u_1} = 1\), từ \({\rm{(}}*{\rm{)}}\) ta có cạnh hình vuông thứ hai là \({u_2} = \frac{{\sqrt 2 }}{2}\), cạnh hình vuông thứ ba là \({u_3} = \frac{1}{2}\), cạnh hình vuông thứ tư là \({u_4} = \frac{{\sqrt 2 }}{4}, \ldots \)

Xét tổng chu vi dãy các hình vuông là:

\(S = 4{u_1} + 4{u_2} + 4{u_3} + \ldots = 4\left( {1 + \frac{{\sqrt 2 }}{2} + \frac{1}{2} + \frac{{\sqrt 2 }}{4} + \ldots } \right).\)

Dễ thấy \(1 + \frac{{\sqrt 2 }}{2} + \frac{1}{2} + \frac{{\sqrt 2 }}{4} + \ldots \) là tổng của cấp số nhân lùi vô hạn có số hạng đầu bằng 1, công bội bằng \(\frac{{\sqrt 2 }}{2}\).

Vậy ta có: \(S = 4 \cdot \frac{{{u_1}}}{{1 - q}} = 4 \cdot \frac{1}{{1 - \frac{{\sqrt 2 }}{2}}} = 8 + 4\sqrt 2 \approx 13,7\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: 0,75

Với mọi \(t \ge 0\), ta có \( - 1 \le \cos \left( {2\pi t + \frac{\pi }{2}} \right) \le 1\)\( \Leftrightarrow - 2 \le 2\cos \left( {2\pi t + \frac{\pi }{2}} \right) \le 2\).

Do đó li độ lớn nhất là \(x = 2\) cm xảy ra khi \(\cos \left( {2\pi t + \frac{\pi }{2}} \right) = 1\)\( \Leftrightarrow 2\pi t + \frac{\pi }{2} = k2\pi \)\[ \Leftrightarrow t = k - \frac{1}{4},k \in \mathbb{Z}\].

\(t \ge 0\) nên \(k - \frac{1}{4} \ge 0 \Leftrightarrow k \ge \frac{1}{4}\).

\(k \in \mathbb{Z}\), suy ra thời điểm đầu tiên thỏa mãn ứng với \(k = 1\). Suy ra \({t_0} = \frac{3}{4} = 0,75\) giây.

Lời giải

a) Đ, b) Đ, c) Đ, d) S

Cho hình hộp \(ABCD.A'B'C'D'\). Gọi \({G (ảnh 1)

a) Vì \(ABCD.A'B'C'D'\) là hình hộp nên \(\left\{ {\begin{array}{*{20}{l}}{A'D'//BC}\\{A'D' = BC}\end{array} \Rightarrow A'D'CB} \right.\) là hình bình hành.

b) \(A'D'CB\) là hình bình hành nên \(A'B//CD' \Rightarrow A'B//\left( {B'D'C} \right)\). (1)

Tương tự, ta có: \(\left\{ {\begin{array}{*{20}{l}}{A'B'//CD}\\{A'B' = CD}\end{array} \Rightarrow A'B'CD} \right.\) là hình bình hành.

Suy ra \(A'D//B'C \Rightarrow A'D//\left( {B'D'C} \right)\).(2)

Từ (1) và \((2)\) suy ra \(\left( {A'BD} \right)//\left( {B'D'C} \right)\).

c) Gọi \(O,O',I\) theo thứ tự là tâm của các hình bình hành \(ABCD,A'B'C'D'\), \(ACC'A'\).

Cho hình hộp \(ABCD.A'B'C'D'\). Gọi \({G (ảnh 2)

\({G_1}\) là trọng tâm tam giác \(AB'D\) nên \(\frac{{A'{G_1}}}{{A'O}} = \frac{2}{3}\) \( \Rightarrow {G_1}\) là trọng tâm tam giác \(A'AC\), suy ra \({G_1} = AI \cap A'O\). (3)

Tương tự, \({G_2}\) là trọng tâm tam giác \(B'D'C\) nên \(\frac{{C{G_2}}}{{CO'}} = \frac{2}{3}\).

\( \Rightarrow {G_2}\) là trọng tâm tam giác \(A'C'C\), suy ra \({G_2} = C'I \cap CO'\). (4)

Từ (3) và (4) suy ra \({G_1},{G_2}\) cùng thuộc \(AC'\).

d) Chứng minh \(A{G_1} = {G_1}{G_2} = {G_2}C' = \frac{1}{3}AC'\):

Ta có: \(\frac{{A{G_1}}}{{AI}} = \frac{2}{3} \Rightarrow \frac{{A{G_1}}}{{AC'}} = \frac{1}{3};\frac{{C'{G_2}}}{{C'I}} = \frac{2}{3} \Rightarrow \frac{{C'{G_2}}}{{AC'}} = \frac{1}{3}\).

Do vậy \(A{G_1} \buildrel\textstyle.\over= {G_1}{G_2} = {G_2}C' = \frac{1}{3}AC'\).

Vậy \({G_1},{G_2}\) cùng thuộc \(AC'\), đồng thời chia \(AC'\) thành ba phần bằng nhau.