Câu hỏi:

20/10/2025 32 Lưu

PHẦN I. Câu trắc nghiệm nhiều phương án lựa chọn. Thí sinh trả lời từ câu 1 đến câu 12.

Mỗi câu hỏi thí sinh chỉ chọn một phương án.

Cho cấp số nhân \(\left( {{u_n}} \right)\) với \({u_1} = 3\)\({u_2} = - 6\). Công bội \(q\) của cấp số nhân là

A. \(2\).                    
B. \( - 2\).                 
C. \( - 9\).                                                               
D. \(9\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

\(q = \frac{{{u_2}}}{{{u_1}}} = \frac{{ - 6}}{3} = - 2\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: 0,5

Trong mặt phẳng \(\left( {SAC (ảnh 1)

Trong mặt phẳng \(\left( {SAC} \right)\), gọi \(K = AM \cap SO\).

Khi đó \(\left( {SBD} \right) \cap \left( {ABM} \right) = BK\).

Trong \(\left( {SBD} \right)\) lấy điểm \(N = BK \cap SD\). Khi đó \(N = SD \cap \left( {ABM} \right)\).

\(ABCD\) là hình vuông cạnh bằng \(a\) nên \(AC = BD = a\sqrt 2 \).

Do đó \(\Delta SAC\)\(\Delta SBD\) là các tam giác đều.

\(K = AM \cap SO \Rightarrow K\) là trọng tâm \(\Delta SAC\).

Suy ra \(K\) là trọng tâm \(\Delta SBD\) \( \Rightarrow BN\) là trung tuyến của \(\Delta SBD\) \( \Rightarrow N\) là trung điểm của \(SD\).

Suy ra \(\frac{{SN}}{{SD}} = \frac{1}{2} = 0,5\).

Lời giải

Cho hình chóp \(S.ABCD\) có đáy là hình (ảnh 1)

Trả lời: 1

Để \(MN//\left( {SAD} \right)\) thì \(MN//AK\) (\(K = BN \cap AD\)).

\(MN//SK\) nên \(\frac{{BM}}{{MS}} = \frac{{BN}}{{NK}}\) (1).

\(AK//BC\) nên \(\frac{{BN}}{{NK}} = \frac{{CN}}{{AN}}\) (2).

Từ (1) và (2), ta có \(\frac{{BM}}{{MS}} = \frac{{CN}}{{AN}}\) hay \(x = y\). Suy ra \(\frac{x}{y} = 1\).